Gene Center, Department for Biochemistry and Center for Integrated Protein Sciences, University of Munich, Munich, Germany.
Department of Life Sciences, University of Trieste, Trieste, Italy.
Antimicrob Agents Chemother. 2018 Jul 27;62(8). doi: 10.1128/AAC.00534-18. Print 2018 Aug.
Unlike most antimicrobial peptides (AMPs), the main mode of action of the subclass of proline-rich antimicrobial peptides (PrAMPs) is not based on disruption of the bacterial membrane. Instead, PrAMPs exploit the inner membrane transporters SbmA and YjiL/MdtM to pass through the bacterial membrane and enter the cytosol of specific Gram-negative bacteria, where they exert an inhibitory effect on protein synthesis. Despite sharing a high proline and arginine content with other characterized PrAMPs, the PrAMP Bac5 has a low sequence identity with them. Here we investigated the mode of action of three N-terminal Bac5 fragments, Bac5(1-15), Bac5(1-25), and Bac5(1-31). We show that Bac5(1-25) and Bac5(1-31) retained excellent antimicrobial activity toward and low toxicity toward eukaryotic cells, whereas Bac5(1-15) was inactive. Bac5(1-25) and Bac5(1-31) inhibited bacterial protein synthesis and Competition assays suggested that the binding site of Bac5 is within the ribosomal tunnel, where it prevents the transition from the initiation to the elongation phase of translation, as reported for other PrAMPs, such as the bovine PrAMP Bac7. Surprisingly, unlike Bac7, Bac5(1-25) exhibited species-specific inhibition, being an excellent inhibitor of protein synthesis on ribosomes but a poor inhibitor on ribosomes. This indicates that while Bac5 most likely has an overlapping binding site with Bac7, the mode of interaction is distinct, suggesting that Bac5 fragments may be interesting alternative lead compounds for the development of new antimicrobial agents.
与大多数抗菌肽 (AMPs) 不同,富含脯氨酸的抗菌肽 (PrAMP) 亚类的主要作用模式不是基于破坏细菌膜。相反,PrAMPs 利用内膜转运蛋白 SbmA 和 YjiL/MdtM 穿过细菌膜并进入特定革兰氏阴性菌的细胞质,在那里它们对蛋白质合成发挥抑制作用。尽管与其他已鉴定的 PrAMPs 具有相同的脯氨酸和精氨酸含量,但 PrAMP Bac5 与它们的序列同一性较低。在这里,我们研究了三个 N 端 Bac5 片段 Bac5(1-15)、Bac5(1-25)和 Bac5(1-31)的作用模式。我们表明,Bac5(1-25)和 Bac5(1-31)对 和保持优异的抗菌活性,对真核细胞的毒性低,而 Bac5(1-15)则没有活性。Bac5(1-25)和 Bac5(1-31)抑制细菌蛋白质合成,竞争测定表明 Bac5 的结合位点位于核糖体隧道内,在那里它阻止从翻译的起始阶段到延伸阶段的转变,如其他 PrAMPs,如牛 PrAMP Bac7 所报道的那样。令人惊讶的是,与 Bac7 不同,Bac5(1-25)表现出物种特异性抑制,是 核糖体上蛋白质合成的优秀抑制剂,但在 核糖体上抑制作用较差。这表明,虽然 Bac5 很可能与 Bac7 有重叠的结合位点,但相互作用的方式是不同的,这表明 Bac5 片段可能是开发新抗菌剂的有趣替代先导化合物。