Suppr超能文献

沃尔夫-赫希霍恩综合征候选基因1对正常造血和B细胞发育至关重要。

Wolf-Hirschhorn Syndrome Candidate 1 Is Necessary for Correct Hematopoietic and B Cell Development.

作者信息

Campos-Sanchez Elena, Deleyto-Seldas Nerea, Dominguez Veronica, Carrillo-de-Santa-Pau Enrique, Ura Kiyoe, Rocha Pedro P, Kim JungHyun, Aljoufi Arafat, Esteve-Codina Anna, Dabad Marc, Gut Marta, Heyn Holger, Kaneda Yasufumi, Nimura Keisuke, Skok Jane A, Martinez-Frias Maria Luisa, Cobaleda Cesar

机构信息

Department of Cell Biology and Immunology, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC/UAM, Madrid 28049, Spain.

Transgenesis Service CNB-CBMSO CSIC/UAM, Madrid 28049, Spain.

出版信息

Cell Rep. 2017 May 23;19(8):1586-1601. doi: 10.1016/j.celrep.2017.04.069.

Abstract

Immunodeficiency is one of the most important causes of mortality associated with Wolf-Hirschhorn syndrome (WHS), a severe rare disease originated by a deletion in chromosome 4p. The WHS candidate 1 (WHSC1) gene has been proposed as one of the main genes responsible for many of the alterations in WHS, but its mechanism of action is still unknown. Here, we present in vivo genetic evidence showing that Whsc1 plays an important role at several points of hematopoietic development. Particularly, our results demonstrate that both differentiation and function of Whsc1-deficient B cells are impaired at several key developmental stages due to profound molecular defects affecting B cell lineage specification, commitment, fitness, and proliferation, demonstrating a causal role for WHSC1 in the immunodeficiency of WHS patients.

摘要

免疫缺陷是与沃尔夫-赫希霍恩综合征(WHS)相关的最重要死亡原因之一,WHS是一种由4号染色体短臂缺失引起的严重罕见疾病。WHS候选基因1(WHSC1)已被认为是导致WHS许多改变的主要基因之一,但其作用机制仍不清楚。在此,我们提供体内遗传学证据表明,Whsc1在造血发育的多个阶段发挥重要作用。特别是,我们的结果表明,由于影响B细胞谱系指定、定向、适应性和增殖的深刻分子缺陷,Whsc1缺陷型B细胞在几个关键发育阶段的分化和功能均受损,这表明WHSC1在WHS患者的免疫缺陷中起因果作用。

相似文献

1
Wolf-Hirschhorn Syndrome Candidate 1 Is Necessary for Correct Hematopoietic and B Cell Development.
Cell Rep. 2017 May 23;19(8):1586-1601. doi: 10.1016/j.celrep.2017.04.069.
2
Wolf-Hirschhorn syndrome candidate 1 is involved in the cellular response to DNA damage.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13130-4. doi: 10.1073/pnas.1110081108. Epub 2011 Jul 25.
3
Wolf-Hirschhorn Syndrome Candidate 1 (whsc1) Functions as a Tumor Suppressor by Governing Cell Differentiation.
Neoplasia. 2017 Aug;19(8):606-616. doi: 10.1016/j.neo.2017.05.001. Epub 2017 Jun 24.
4
A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome.
Nature. 2009 Jul 9;460(7252):287-91. doi: 10.1038/nature08086. Epub 2009 May 31.
5
Wolf-Hirschhorn syndrome candidate 1 (Whsc1) methyltransferase signals via a Pitx2-miR-23/24 axis to effect tooth development.
J Biol Chem. 2023 Nov;299(11):105324. doi: 10.1016/j.jbc.2023.105324. Epub 2023 Oct 6.
6
Auditory hair cell defects as potential cause for sensorineural deafness in Wolf-Hirschhorn syndrome.
Dis Model Mech. 2015 Sep;8(9):1027-35. doi: 10.1242/dmm.019547. Epub 2015 Jun 18.
7
De novo loss-of-function variants in () associate with a subset of Wolf-Hirschhorn syndrome.
Cold Spring Harb Mol Case Stud. 2019 Aug 1;5(4). doi: 10.1101/mcs.a004044. Print 2019 Aug.
8
Deletions involving genes WHSC1 and LETM1 may be necessary, but are not sufficient to cause Wolf-Hirschhorn Syndrome.
Eur J Hum Genet. 2014 Apr;22(4):464-70. doi: 10.1038/ejhg.2013.192. Epub 2013 Aug 21.
9
Developmental delay and failure to thrive associated with a loss-of-function variant in WHSC1 (NSD2).
Am J Med Genet A. 2018 Dec;176(12):2798-2802. doi: 10.1002/ajmg.a.40498. Epub 2018 Oct 22.
10
The histone methyltransferase MMSET regulates class switch recombination.
J Immunol. 2013 Jan 15;190(2):756-63. doi: 10.4049/jimmunol.1201811. Epub 2012 Dec 14.

引用本文的文献

1
Loss of function in causes DNA methylation signature similar to that in Wolf-Hirschhorn syndrome.
Genet Med Open. 2024 Mar 14;2:101838. doi: 10.1016/j.gimo.2024.101838. eCollection 2024.
2
Histone lysine methylation modifiers controlled by protein stability.
Exp Mol Med. 2024 Oct;56(10):2127-2144. doi: 10.1038/s12276-024-01329-5. Epub 2024 Oct 11.
3
Loss of NSD2 causes dysregulation of synaptic genes and altered H3K36 dimethylation in mice.
Front Genet. 2024 Feb 14;15:1308234. doi: 10.3389/fgene.2024.1308234. eCollection 2024.
4
Wolf-Hirschhorn Syndrome with Hyperparathyroidism: A Case Report and a Narrative Review of the Literature.
J Pediatr Genet. 2021 Jun 26;12(4):312-317. doi: 10.1055/s-0041-1729751. eCollection 2023 Dec.
5
The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities.
Front Neurosci. 2023 Feb 10;17:989109. doi: 10.3389/fnins.2023.989109. eCollection 2023.
6
NSD2 as a Promising Target in Hematological Disorders.
Int J Mol Sci. 2022 Sep 21;23(19):11075. doi: 10.3390/ijms231911075.
8
The role of NSD1, NSD2, and NSD3 histone methyltransferases in solid tumors.
Cell Mol Life Sci. 2022 May 9;79(6):285. doi: 10.1007/s00018-022-04321-2.
9
SALL4 Oncogenic Function in Cancers: Mechanisms and Therapeutic Relevance.
Int J Mol Sci. 2022 Feb 12;23(4):2053. doi: 10.3390/ijms23042053.

本文引用的文献

1
Epigenetics of hematopoiesis and hematological malignancies.
Genes Dev. 2016 Sep 15;30(18):2021-2041. doi: 10.1101/gad.284109.116.
3
FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair.
Cell Rep. 2016 Jun 14;15(11):2488-99. doi: 10.1016/j.celrep.2016.05.031. Epub 2016 Jun 2.
4
MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents.
Oncogene. 2016 Nov 10;35(45):5905-5915. doi: 10.1038/onc.2016.116. Epub 2016 Apr 25.
5
Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis.
J Clin Invest. 2016 Mar 1;126(3):905-20. doi: 10.1172/JCI84014. Epub 2016 Jan 25.
6
MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.
Cell Cycle. 2016;15(1):95-105. doi: 10.1080/15384101.2015.1121323.
7
Wolf-Hirschhorn syndrome: A review and update.
Am J Med Genet C Semin Med Genet. 2015 Sep;169(3):216-23. doi: 10.1002/ajmg.c.31449. Epub 2015 Aug 4.
8
Combined heterozygous loss of Ebf1 and Pax5 allows for T-lineage conversion of B cell progenitors.
J Exp Med. 2015 Jun 29;212(7):1109-23. doi: 10.1084/jem.20132100. Epub 2015 Jun 8.
9
SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair.
Oncogene. 2015 Nov 12;34(46):5699-708. doi: 10.1038/onc.2015.24. Epub 2015 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验