Suppr超能文献

光纤激光器中的群速度锁定矢量孤子分子。

Group-velocity-locked vector soliton molecules in fiber lasers.

机构信息

Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P. R. China.

School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, P. R. China.

出版信息

Sci Rep. 2017 May 24;7(1):2369. doi: 10.1038/s41598-017-02482-w.

Abstract

Physics phenomena of multi-soliton complexes have enriched the life of dissipative solitons in fiber lasers. By developing a birefringence-enhanced fiber laser, we report the first experimental observation of group-velocity-locked vector soliton (GVLVS) molecules. The birefringence-enhanced fiber laser facilitates the generation of GVLVSs, where the two orthogonally polarized components are coupled together to form a multi-soliton complex. Moreover, the interaction of repulsive and attractive forces between multiple pulses binds the particle-like GVLVSs together in time domain to further form compound multi-soliton complexes, namely GVLVS molecules. By adopting the polarization-resolved measurement, we show that the two orthogonally polarized components of the GVLVS molecules are both soliton molecules supported by the strongly modulated spectral fringes and the double-humped intensity profiles. Additionally, GVLVS molecules with various soliton separations are also observed by adjusting the pump power and the polarization controller.

摘要

多孤子复合结构的物理现象丰富了光纤激光器中耗散孤子的寿命。通过开发双折射增强光纤激光器,我们首次实验观察到了群速度锁定矢量孤子(GVLVS)分子。双折射增强光纤激光器促进了 GVLVS 的产生,其中两个正交偏振分量耦合在一起形成多孤子复合结构。此外,多个脉冲之间的斥力和引力相互作用将类粒子的 GVLVS 在时域中束缚在一起,进一步形成复合多孤子复合结构,即 GVLVS 分子。通过采用偏振分辨测量,我们表明 GVLVS 分子的两个正交偏振分量都是由强调制光谱条纹和双峰强度轮廓支撑的孤子分子。此外,通过调整泵浦功率和偏振控制器,还观察到了具有不同孤子间隔的 GVLVS 分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0671/5443802/ab19257fece5/41598_2017_2482_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验