Suppr超能文献

探索微小RNA基因发现、靶点及功能中的机器学习技术

Machine Learning Techniques in Exploring MicroRNA Gene Discovery, Targets, and Functions.

作者信息

Singh Sumi, Benton Ryan G, Singh Anurag, Singh Anshuman

机构信息

School of Computer Science and Mathematics, University of Central Missouri, Warrensburg, MO, 64093, USA.

Department of Computer Science, University of South Alabama School of Computing, Shelby Hall, Suite 2101, 150 Jaguar Drive, Mobile, AL, 36688, USA.

出版信息

Methods Mol Biol. 2017;1617:211-224. doi: 10.1007/978-1-4939-7046-9_16.

Abstract

In recent years, the role of miRNAs in post-transcriptional gene regulation has provided new insights into the understanding of several types of cancers and neurological disorders. Although miRNA research has gathered great momentum since its discovery, traditional biological methods for finding miRNA genes and targets continue to remain a huge challenge due to the laborious tasks and extensive time involved. Fortunately, advances in computational methods have yielded considerable improvements in miRNA studies. This literature review briefly discusses recent machine learning-based techniques applied in the discovery of miRNAs, prediction of miRNA targets, and inference of miRNA functions. We also discuss the limitations of how these approaches have been elucidated in previous studies.

摘要

近年来,微小RNA(miRNA)在转录后基因调控中的作用为理解多种癌症和神经疾病提供了新的视角。尽管自miRNA被发现以来,相关研究发展迅速,但由于任务艰巨且耗时较长,寻找miRNA基因和靶标的传统生物学方法仍然面临巨大挑战。幸运的是,计算方法的进步在miRNA研究中取得了显著进展。这篇文献综述简要讨论了最近基于机器学习的技术在miRNA发现、miRNA靶标预测和miRNA功能推断中的应用。我们还讨论了这些方法在以往研究中存在的局限性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验