Suppr超能文献

用于预测脑部激光消融结果的理论模型:基于临床磁共振测温图像的校准和验证。

Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images.

机构信息

a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.

b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA.

出版信息

Int J Hyperthermia. 2018 Feb;34(1):101-111. doi: 10.1080/02656736.2017.1319974. Epub 2017 May 19.

Abstract

PURPOSE

Neurosurgical laser ablation is experiencing a renaissance. Computational tools for ablation planning aim to further improve the intervention. Here, global optimisation and inverse problems are demonstrated to train a model that predicts maximum laser ablation extent.

METHODS

A closed-form steady state model is trained on and then subsequently compared to N = 20 retrospective clinical MR thermometry datasets. Dice similarity coefficient (DSC) is calculated to provide a measure of region overlap between the 57 °C isotherms of the thermometry data and the model-predicted ablation regions; 57 °C is a tissue death surrogate at thermal steady state. A global optimisation scheme samples the dominant model parameter sensitivities, blood perfusion (ω) and optical parameter (μ) values, throughout a parameter space totalling 11 440 value-pairs. This represents a lookup table of μ-ω pairs with the corresponding DSC value for each patient dataset. The μ-ω pair with the maximum DSC calibrates the model parameters, maximising predictive value for each patient. Finally, leave-one-out cross-validation with global optimisation information trains the model on the entire clinical dataset, and compares against the model naïvely using literature values for ω and μ.

RESULTS

When using naïve literature values, the model's mean DSC is 0.67 whereas the calibrated model produces 0.82 during cross-validation, an improvement of 0.15 in overlap with the patient data. The 95% confidence interval of the mean difference is 0.083-0.23 (p < 0.001).

CONCLUSIONS

During cross-validation, the calibrated model is superior to the naïve model as measured by DSC, with +22% mean prediction accuracy. Calibration empowers a relatively simple model to become more predictive.

摘要

目的

神经外科激光消融术正在经历复兴。消融规划的计算工具旨在进一步提高干预效果。在这里,全局优化和逆问题被证明可以训练一个模型,该模型可以预测最大激光消融范围。

方法

在 20 个回顾性临床磁共振测温数据集上训练一个封闭形式的稳态模型,然后对其进行比较。计算 Dice 相似系数(DSC),以提供测温数据的 57°C 等温线与模型预测的消融区域之间区域重叠的度量;57°C 是热稳态下组织死亡的替代物。全局优化方案在总共 11440 个对值的参数空间中对占主导地位的模型参数敏感性(ω)和光学参数(μ)值进行采样。这代表了具有每个患者数据集相应 DSC 值的μ-ω 对的查找表。具有最大 DSC 的μ-ω 对校准模型参数,为每个患者最大化预测值。最后,使用全局优化信息的留一法交叉验证在整个临床数据集上训练模型,并与使用文献值ω和μ的模型进行比较。

结果

当使用文献中的原始值时,模型的平均 DSC 为 0.67,而在交叉验证中校准后的模型产生 0.82,与患者数据的重叠度提高了 0.15。平均差异的 95%置信区间为 0.083-0.23(p<0.001)。

结论

在交叉验证中,校准后的模型在 DSC 测量方面优于原始模型,平均预测准确率提高了 22%。校准使相对简单的模型更具预测性。

相似文献

1
Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images.
Int J Hyperthermia. 2018 Feb;34(1):101-111. doi: 10.1080/02656736.2017.1319974. Epub 2017 May 19.
2
A heterogeneous tissue model for treatment planning for magnetic resonance-guided laser interstitial thermal therapy.
Int J Hyperthermia. 2018 Nov;34(7):943-952. doi: 10.1080/02656736.2018.1429679. Epub 2018 Feb 5.
3
A model evaluation study for treatment planning of laser-induced thermal therapy.
Int J Hyperthermia. 2015;31(7):705-14. doi: 10.3109/02656736.2015.1055831. Epub 2015 Sep 14.
4
Predictive modeling of brain tumor laser ablation dynamics.
J Neurooncol. 2019 Aug;144(1):193-203. doi: 10.1007/s11060-019-03220-0. Epub 2019 Jun 25.
5
Magnetic resonance-based thermometry during laser ablation on ex-vivo swine pancreas and liver.
Med Eng Phys. 2015 Jul;37(7):631-41. doi: 10.1016/j.medengphy.2015.04.001. Epub 2015 Jun 5.
6
MRI-guided thermal ablation therapy: model and parameter estimates to predict cell death from MR thermometry images.
Ann Biomed Eng. 2007 Aug;35(8):1391-403. doi: 10.1007/s10439-007-9300-3. Epub 2007 Apr 7.
7
Referenceless magnetic resonance temperature imaging using Gaussian process modeling.
Med Phys. 2017 Jul;44(7):3545-3555. doi: 10.1002/mp.12231. Epub 2017 Jun 1.
8
Design and initial evaluation of a treatment planning software system for MRI-guided laser ablation in the brain.
Int J Comput Assist Radiol Surg. 2014 Jul;9(4):659-67. doi: 10.1007/s11548-013-0948-x. Epub 2013 Oct 5.
9
Ablation dynamics during laser interstitial thermal therapy for mesiotemporal epilepsy.
PLoS One. 2018 Jul 6;13(7):e0199190. doi: 10.1371/journal.pone.0199190. eCollection 2018.
10
Study of laser ablation in the in vivo rabbit brain with MR thermometry.
J Magn Reson Imaging. 2002 Aug;16(2):147-52. doi: 10.1002/jmri.10152.

引用本文的文献

2
Predicting brain temperature in humans using bioheat models: Progress and outlook.
J Cereb Blood Flow Metab. 2023 Jun;43(6):833-842. doi: 10.1177/0271678X231162173. Epub 2023 Mar 8.
3
Toward Image Data-Driven Predictive Modeling for Guiding Thermal Ablative Therapy.
IEEE Trans Biomed Eng. 2020 Jun;67(6):1548-1557. doi: 10.1109/TBME.2019.2939686. Epub 2019 Sep 5.

本文引用的文献

2
Gold nanorod-mediated near-infrared laser ablation: in vivo experiments on mice and theoretical analysis at different settings.
Int J Hyperthermia. 2017 Mar;33(2):150-159. doi: 10.1080/02656736.2016.1230682. Epub 2016 Sep 20.
3
Quantifying Post- Laser Ablation Prostate Therapy Changes on MRI via a Domain-Specific Biomechanical Model: Preliminary Findings.
PLoS One. 2016 Apr 18;11(4):e0150016. doi: 10.1371/journal.pone.0150016. eCollection 2016.
4
Physical modeling of microwave ablation zone clinical margin variance.
Med Phys. 2016 Apr;43(4):1764. doi: 10.1118/1.4942980.
5
Magnetic resonance-guided laser interstitial thermal therapy: report of a series of pediatric brain tumors.
J Neurosurg Pediatr. 2016 Jun;17(6):723-33. doi: 10.3171/2015.11.PEDS15242. Epub 2016 Feb 5.
6
A model evaluation study for treatment planning of laser-induced thermal therapy.
Int J Hyperthermia. 2015;31(7):705-14. doi: 10.3109/02656736.2015.1055831. Epub 2015 Sep 14.
7
MR-guided laser interstitial thermal therapy for pediatric drug-resistant lesional epilepsy.
Epilepsia. 2015 Oct;56(10):1590-8. doi: 10.1111/epi.13106. Epub 2015 Aug 7.
8
Anterior temporal lobectomy compared with laser thermal hippocampectomy for mesial temporal epilepsy: A threshold analysis study.
Epilepsy Res. 2015 Sep;115:1-7. doi: 10.1016/j.eplepsyres.2015.05.007. Epub 2015 May 22.
10
Brain metastasis research: a late awakening.
Chin Clin Oncol. 2015 Jun;4(2):17. doi: 10.3978/j.issn.2304-3865.2015.05.01.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验