a Department of Imaging Physics , University of Texas MD Anderson Cancer Center , Houston , TX , USA.
b Department of Medical Physics , UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA.
Int J Hyperthermia. 2018 Feb;34(1):101-111. doi: 10.1080/02656736.2017.1319974. Epub 2017 May 19.
Neurosurgical laser ablation is experiencing a renaissance. Computational tools for ablation planning aim to further improve the intervention. Here, global optimisation and inverse problems are demonstrated to train a model that predicts maximum laser ablation extent.
A closed-form steady state model is trained on and then subsequently compared to N = 20 retrospective clinical MR thermometry datasets. Dice similarity coefficient (DSC) is calculated to provide a measure of region overlap between the 57 °C isotherms of the thermometry data and the model-predicted ablation regions; 57 °C is a tissue death surrogate at thermal steady state. A global optimisation scheme samples the dominant model parameter sensitivities, blood perfusion (ω) and optical parameter (μ) values, throughout a parameter space totalling 11 440 value-pairs. This represents a lookup table of μ-ω pairs with the corresponding DSC value for each patient dataset. The μ-ω pair with the maximum DSC calibrates the model parameters, maximising predictive value for each patient. Finally, leave-one-out cross-validation with global optimisation information trains the model on the entire clinical dataset, and compares against the model naïvely using literature values for ω and μ.
When using naïve literature values, the model's mean DSC is 0.67 whereas the calibrated model produces 0.82 during cross-validation, an improvement of 0.15 in overlap with the patient data. The 95% confidence interval of the mean difference is 0.083-0.23 (p < 0.001).
During cross-validation, the calibrated model is superior to the naïve model as measured by DSC, with +22% mean prediction accuracy. Calibration empowers a relatively simple model to become more predictive.
神经外科激光消融术正在经历复兴。消融规划的计算工具旨在进一步提高干预效果。在这里,全局优化和逆问题被证明可以训练一个模型,该模型可以预测最大激光消融范围。
在 20 个回顾性临床磁共振测温数据集上训练一个封闭形式的稳态模型,然后对其进行比较。计算 Dice 相似系数(DSC),以提供测温数据的 57°C 等温线与模型预测的消融区域之间区域重叠的度量;57°C 是热稳态下组织死亡的替代物。全局优化方案在总共 11440 个对值的参数空间中对占主导地位的模型参数敏感性(ω)和光学参数(μ)值进行采样。这代表了具有每个患者数据集相应 DSC 值的μ-ω 对的查找表。具有最大 DSC 的μ-ω 对校准模型参数,为每个患者最大化预测值。最后,使用全局优化信息的留一法交叉验证在整个临床数据集上训练模型,并与使用文献值ω和μ的模型进行比较。
当使用文献中的原始值时,模型的平均 DSC 为 0.67,而在交叉验证中校准后的模型产生 0.82,与患者数据的重叠度提高了 0.15。平均差异的 95%置信区间为 0.083-0.23(p<0.001)。
在交叉验证中,校准后的模型在 DSC 测量方面优于原始模型,平均预测准确率提高了 22%。校准使相对简单的模型更具预测性。