Suppr超能文献

迈向用于指导热消融治疗的图像数据驱动预测建模

Toward Image Data-Driven Predictive Modeling for Guiding Thermal Ablative Therapy.

作者信息

Collins Jarrod A, Heiselman Jon S, Clements Logan W, Weis Jared A, Brown Daniel B, Miga Michael I

出版信息

IEEE Trans Biomed Eng. 2020 Jun;67(6):1548-1557. doi: 10.1109/TBME.2019.2939686. Epub 2019 Sep 5.

Abstract

OBJECTIVE

Accurate prospective modeling of microwave ablation (MWA) procedures can provide powerful planning and navigational information to physicians. However, patient-specific tissue properties are generally unavailable and can vary based on factors such as relative perfusion and state of disease. Therefore, a need exists for modeling frameworks that account for variations in tissue properties.

METHODS

In this study, we establish an inverse modeling approach to reconstruct a set of tissue properties that best fit the model-predicted and observed ablation zone extents in a series of phantoms of varying fat content. We then create a model of these tissue properties as a function of fat content and perform a comprehensive leave-one-out evaluation of the predictive property model. Furthermore, we validate the inverse-model predictions in a separate series of phantoms that include co-recorded temperature data.

RESULTS

This model-based approach yielded thermal profiles in close agreement with experimental measurements in the series of validation phantoms (average root-mean-square error of 4.8 °C). The model-predicted ablation zones showed compelling overlap with observed ablations in both the series of validation phantoms (93.4 ± 2.2%) and the leave-one-out cross validation study (86.6 ± 5.3%). These results demonstrate an average improvement of 17.3% in predicted ablation zone overlap when comparing the presented property-model to properties derived from phantom component volume fractions.

CONCLUSION

These results demonstrate accurate model-predicted ablation estimates based on image-driven determination of tissue properties.

SIGNIFICANCE

The work demonstrates, as a proof-of-concept, that physical modeling parameters can be linked with quantitative medical imaging to improve the utility of predictive procedural modeling for MWA.

摘要

目的

对微波消融(MWA)过程进行精确的前瞻性建模可为医生提供有力的规划和导航信息。然而,特定患者的组织特性通常难以获取,并且会因相对灌注和疾病状态等因素而有所不同。因此,需要能够考虑组织特性变化的建模框架。

方法

在本研究中,我们建立了一种逆建模方法,以重建一组最能拟合一系列不同脂肪含量体模中模型预测和观察到的消融区范围的组织特性。然后,我们创建一个这些组织特性作为脂肪含量函数的模型,并对预测特性模型进行全面的留一法评估。此外,我们在另一系列包括同步记录温度数据的体模中验证逆模型预测。

结果

这种基于模型的方法产生的热分布与验证体模系列中的实验测量结果高度吻合(平均均方根误差为4.8°C)。在验证体模系列(93.4±2.2%)和留一法交叉验证研究(86.6±5.3%)中,模型预测的消融区与观察到的消融区都有显著重叠。与从体模成分体积分数得出的特性相比,当将所提出的特性模型用于预测时,消融区重叠预测平均提高了17.3%。

结论

这些结果表明基于图像驱动的组织特性测定能够准确地进行模型预测的消融估计。

意义

作为概念验证,该研究表明物理建模参数可与定量医学成像相联系,以提高MWA预测性程序建模的效用。

相似文献

6
Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation.用于优化热肿瘤消融的热致变色组织模拟体模
Int J Hyperthermia. 2016 May;32(3):239-43. doi: 10.3109/02656736.2016.1145745. Epub 2016 Apr 20.

本文引用的文献

10
Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis.肝癌:与肥胖、脂肪肝和肝硬化的关联。
Annu Rev Med. 2016;67:103-17. doi: 10.1146/annurev-med-090514-013832. Epub 2015 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验