Fahrenholtz Samuel J, Moon Tim Y, Franco Michael, Medina David, Danish Shabbar, Gowda Ashok, Shetty Anil, Maier Florian, Hazle John D, Stafford Roger J, Warburton Tim, Fuentes David
a Department of Imaging Physics , M.D. Anderson Cancer Center, University of Texas , Houston , Texas , USA .
b Graduate School of Biomedical Sciences, University of Texas , Houston , Texas , USA .
Int J Hyperthermia. 2015;31(7):705-14. doi: 10.3109/02656736.2015.1055831. Epub 2015 Sep 14.
A cross-validation analysis evaluating computer model prediction accuracy for a priori planning magnetic resonance-guided laser-induced thermal therapy (MRgLITT) procedures in treating focal diseased brain tissue is presented. Two mathematical models are considered. (1) A spectral element discretisation of the transient Pennes bioheat transfer equation is implemented to predict the laser-induced heating in perfused tissue. (2) A closed-form algorithm for predicting the steady-state heat transfer from a linear superposition of analytic point source heating functions is also considered. Prediction accuracy is retrospectively evaluated via leave-one-out cross-validation (LOOCV). Modelling predictions are quantitatively evaluated in terms of a Dice similarity coefficient (DSC) between the simulated thermal dose and thermal dose information contained within N = 22 MR thermometry datasets. During LOOCV analysis, the transient model's DSC mean and median are 0.7323 and 0.8001 respectively, with 15 of 22 DSC values exceeding the success criterion of DSC ≥ 0.7. The steady-state model's DSC mean and median are 0.6431 and 0.6770 respectively, with 10 of 22 passing. A one-sample, one-sided Wilcoxon signed-rank test indicates that the transient finite element method model achieves the prediction success criteria, DSC ≥ 0.7, at a statistically significant level.
本文介绍了一项交叉验证分析,评估计算机模型对磁共振引导激光诱导热疗(MRgLITT)治疗局灶性病变脑组织的先验规划程序的预测准确性。考虑了两种数学模型。(1)采用瞬态彭尼斯生物热传递方程的谱元离散化来预测灌注组织中的激光诱导加热。(2)还考虑了一种用于从解析点源加热函数的线性叠加预测稳态热传递的封闭形式算法。通过留一法交叉验证(LOOCV)回顾性评估预测准确性。根据模拟热剂量与N = 22个磁共振测温数据集中包含的热剂量信息之间的骰子相似系数(DSC)对建模预测进行定量评估。在LOOCV分析期间,瞬态模型的DSC均值和中位数分别为0.7323和0.8001,22个DSC值中有15个超过了DSC≥0.7的成功标准。稳态模型的DSC均值和中位数分别为0.6431和0.6770,22个中有10个通过。单样本单侧威尔科克森符号秩检验表明,瞬态有限元方法模型在统计显著水平上达到了预测成功标准DSC≥0.7。