Pototschnig Johann V, Lackner Florian, Hauser Andreas W, Ernst Wolfgang E
Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria.
Phys Chem Chem Phys. 2017 Jun 7;19(22):14718-14728. doi: 10.1039/c7cp02332d.
Electronic excitations of an electron bound to an alkali metal ion inside a droplet of superfluid He are computed via a combination of helium density functional theory and the numerical integration of the Schrödinger equation for a single electron in a modified, He density dependent atomic pseudopotential. The application of a spectral method to the radial part of the valence electron wavefunction allows the computation of highly excited Rydberg states. For low principal quantum numbers, the energy required to push the electron outward is larger than the solvation energy of the ion. However, for higher principal quantum numbers the situation is reversed, which suggests the stability of a system where the ion sits inside the droplet while the valence electron orbits the nanodroplet.
通过将氦密度泛函理论与修正的、依赖于氦密度的原子赝势中单个电子的薛定谔方程数值积分相结合,计算超流氦液滴内与碱金属离子结合的电子的电子激发。将谱方法应用于价电子波函数的径向部分,可以计算高激发的里德堡态。对于低主量子数,将电子向外推所需的能量大于离子的溶剂化能。然而,对于较高的主量子数,情况则相反,这表明离子位于液滴内部而价电子绕纳米液滴轨道运行的系统具有稳定性。