Fei Lunke, Zhang Bob, Xu Yong, Tian Chunwei, Rida Imad, Zhang David
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4979-4990. doi: 10.1109/TNNLS.2021.3066381. Epub 2022 Aug 31.
Heterogeneous palmprint recognition has attracted considerable research attention in recent years because it has the potential to greatly improve the recognition performance for personal authentication. In this article, we propose a simultaneous heterogeneous palmprint feature learning and encoding method for heterogeneous palmprint recognition. Unlike existing hand-crafted palmprint descriptors that usually extract features from raw pixels and require strong prior knowledge to design them, the proposed method automatically learns the discriminant binary codes from the informative direction convolution difference vectors of palmprint images. Differing from most heterogeneous palmprint descriptors that individually extract palmprint features from each modality, our method jointly learns the discriminant features from heterogeneous palmprint images so that the specific discriminant properties of different modalities can be better exploited. Furthermore, we present a general heterogeneous palmprint discriminative feature learning model to make the proposed method suitable for multiple heterogeneous palmprint recognition. Experimental results on the widely used PolyU multispectral palmprint database clearly demonstrate the effectiveness of the proposed method.
近年来,异构掌纹识别因其具有极大提高个人身份认证识别性能的潜力而备受研究关注。在本文中,我们提出了一种用于异构掌纹识别的同步异构掌纹特征学习与编码方法。与现有的通常从原始像素中提取特征且需要强大先验知识来设计的手工掌纹描述符不同,该方法从掌纹图像的信息方向卷积差分向量中自动学习判别二进制码。与大多数从每种模态单独提取掌纹特征的异构掌纹描述符不同,我们的方法从异构掌纹图像中联合学习判别特征,以便能更好地利用不同模态的特定判别特性。此外,我们提出了一个通用的异构掌纹判别特征学习模型,以使所提方法适用于多种异构掌纹识别。在广泛使用的香港理工大学多光谱掌纹数据库上的实验结果清楚地证明了所提方法的有效性。