The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China.
School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China.
ACS Nano. 2017 Jul 25;11(7):6832-6842. doi: 10.1021/acsnano.7b01873. Epub 2017 May 31.
The growing risk of human exposure to airborne nanoparticles (NPs) causes a general concern on the biosafety of nanotechnology. Inhaled NPs can deposit in the deep lung at which they interact with the pulmonary surfactant (PS). Despite the increasing study of nano-bio interactions, detailed molecular mechanisms by which inhaled NPs interact with the natural PS system remain unclear. Using coarse-grained molecular dynamics simulation, we studied the interaction between NPs and the PS system in the alveolar fluid. It was found that regardless of different physicochemical properties, upon contacting the PS, both silver and polystyrene NPs are immediately coated with a biomolecular corona that consists of both lipids and proteins. Structure and molecular conformation of the PS corona depend on the hydrophobicity of the pristine NPs. Quantitative analysis revealed that lipid composition of the corona formed on different NPs is relatively conserved and is similar to that of the bulk phase PS. However, relative abundance of the surfactant-associated proteins, SP-A, SP-B, and SP-C, is notably affected by the hydrophobicity of the NP. The PS corona provides the NPs with a physicochemical barrier against the environment, equalizes the hydrophobicity of the pristine NPs, and may enhance biorecognition of the NPs. These modifications in physicochemical properties may play a crucial role in affecting the biological identity of the NPs and hence alter their subsequent interactions with cells and other biological entities. Our results suggest that all studies of inhalation nanotoxicology or NP-based pulmonary drug delivery should consider the influence of the PS corona.
空气中纳米颗粒(NPs)对人类暴露风险的增加引起了人们对纳米技术生物安全性的普遍关注。吸入的 NPs 可以在肺部深处沉积,在那里它们与肺表面活性剂(PS)相互作用。尽管对纳米-生物相互作用的研究越来越多,但吸入的 NPs 与天然 PS 系统相互作用的详细分子机制仍不清楚。本文使用粗粒分子动力学模拟研究了 NPs 与肺泡液中的 PS 系统之间的相互作用。结果发现,无论 NPs 的物理化学性质如何,与 PS 接触后,银和聚苯乙烯 NPs 都会立即被一层由脂质和蛋白质组成的生物分子冠所覆盖。PS 冠的结构和分子构象取决于原始 NPs 的疏水性。定量分析表明,不同 NPs 上形成的 PS 冠的脂质组成相对保守,与 PS 的体相相似。然而,表面活性剂相关蛋白 SP-A、SP-B 和 SP-C 的相对丰度明显受到 NP 疏水性的影响。PS 冠为 NPs 提供了一个物理化学屏障来对抗环境,使原始 NPs 的疏水性均匀化,并可能增强 NPs 的生物识别。这些理化性质的改变可能在影响 NPs 的生物学特性方面发挥关键作用,并改变它们随后与细胞和其他生物实体的相互作用。我们的结果表明,所有吸入纳米毒理学或基于 NP 的肺部药物输送研究都应考虑 PS 冠的影响。
ACS Appl Mater Interfaces. 2018-6-7
J Control Release. 2015-9-10
Nanotoxicology. 2016-11
Part Fibre Toxicol. 2025-2-24
Adv Nanobiomed Res. 2023-3
Curr Res Toxicol. 2022-12-23
Front Bioeng Biotechnol. 2022-12-12
Nano Lett. 2022-7-13