Hu Guoqing, Jiao Bao, Shi Xinghua, Valle Russell P, Fan Qihui, Zuo Yi Y
The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences , Beijing, 100190, China.
ACS Nano. 2013 Dec 23;7(12):10525-33. doi: 10.1021/nn4054683. Epub 2013 Nov 26.
Interaction with the pulmonary surfactant film, being the first line of host defense, represents the initial bio-nano interaction in the lungs. Such interaction determines the fate of the inhaled nanoparticles and their potential therapeutic or toxicological effect. Despite considerable progress in optimizing physicochemical properties of nanoparticles for improved delivery and targeting, the mechanisms by which inhaled nanoparticles interact with the pulmonary surfactant film are still largely unknown. Here, using combined in vitro and in silico methods, we show how hydrophobicity and surface charge of nanoparticles differentially regulate the translocation and interaction with the pulmonary surfactant film. While hydrophilic nanoparticles generally translocate quickly across the pulmonary surfactant film, a significant portion of hydrophobic nanoparticles are trapped by the surfactant film and encapsulated in lipid protrusions upon film compression. Our results support a novel model of pulmonary surfactant lipoprotein corona associated with inhaled nanoparticles of different physicochemical properties. Our data suggest that the study of pulmonary nanotoxicology and nanoparticle-based pulmonary drug delivery should consider this lipoprotein corona.
与肺表面活性物质膜相互作用是宿主防御的第一道防线,是肺部最初的生物纳米相互作用。这种相互作用决定了吸入纳米颗粒的命运及其潜在的治疗或毒理学效应。尽管在优化纳米颗粒的物理化学性质以改善递送和靶向方面取得了相当大的进展,但吸入纳米颗粒与肺表面活性物质膜相互作用的机制仍 largely unknown。在这里,我们使用体外和计算机模拟相结合的方法,展示了纳米颗粒的疏水性和表面电荷如何差异调节其与肺表面活性物质膜的转运和相互作用。亲水性纳米颗粒通常能快速穿过肺表面活性物质膜,而相当一部分疏水性纳米颗粒会被表面活性物质膜捕获,并在膜压缩时被包裹在脂质突起中。我们的结果支持了一种与不同物理化学性质的吸入纳米颗粒相关的新型肺表面活性物质脂蛋白冠模型。我们的数据表明,肺纳米毒理学和基于纳米颗粒的肺部药物递送研究应考虑这种脂蛋白冠。