Suppr超能文献

ROTS:一个用于优化可重复性统计检验的R软件包。

ROTS: An R package for reproducibility-optimized statistical testing.

作者信息

Suomi Tomi, Seyednasrollah Fatemeh, Jaakkola Maria K, Faux Thomas, Elo Laura L

机构信息

Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.

Department of Future Technologies, University of Turku, Turku, Finland.

出版信息

PLoS Comput Biol. 2017 May 25;13(5):e1005562. doi: 10.1371/journal.pcbi.1005562. eCollection 2017 May.

Abstract

Differential expression analysis is one of the most common types of analyses performed on various biological data (e.g. RNA-seq or mass spectrometry proteomics). It is the process that detects features, such as genes or proteins, showing statistically significant differences between the sample groups under comparison. A major challenge in the analysis is the choice of an appropriate test statistic, as different statistics have been shown to perform well in different datasets. To this end, the reproducibility-optimized test statistic (ROTS) adjusts a modified t-statistic according to the inherent properties of the data and provides a ranking of the features based on their statistical evidence for differential expression between two groups. ROTS has already been successfully applied in a range of different studies from transcriptomics to proteomics, showing competitive performance against other state-of-the-art methods. To promote its widespread use, we introduce here a Bioconductor R package for performing ROTS analysis conveniently on different types of omics data. To illustrate the benefits of ROTS in various applications, we present three case studies, involving proteomics and RNA-seq data from public repositories, including both bulk and single cell data. The package is freely available from Bioconductor (https://www.bioconductor.org/packages/ROTS).

摘要

差异表达分析是对各种生物学数据(如RNA测序或质谱蛋白质组学)进行的最常见分析类型之一。它是一个检测特征(如基因或蛋白质)的过程,这些特征在进行比较的样本组之间显示出统计学上的显著差异。分析中的一个主要挑战是选择合适的检验统计量,因为已表明不同的统计量在不同的数据集中表现良好。为此,可重复性优化检验统计量(ROTS)根据数据的固有属性调整修正后的t统计量,并根据特征在两组之间差异表达的统计证据对其进行排名。ROTS已经成功应用于从转录组学到蛋白质组学的一系列不同研究中,与其他先进方法相比表现出竞争力。为了促进其广泛应用,我们在此介绍一个用于在不同类型的组学数据上方便地进行ROTS分析的Bioconductor R包。为了说明ROTS在各种应用中的优势,我们展示了三个案例研究,涉及来自公共数据库的蛋白质组学和RNA测序数据,包括批量数据和单细胞数据。该包可从Bioconductor(https://www.bioconductor.org/packages/ROTS)免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6b/5470739/025896db290e/pcbi.1005562.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验