Law Charity W, Chen Yunshun, Shi Wei, Smyth Gordon K
Genome Biol. 2014 Feb 3;15(2):R29. doi: 10.1186/gb-2014-15-2-r29.
New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods.
本文介绍了用于分析RNA测序实验读取计数的新的正态线性建模策略。voom方法估计对数计数的均值-方差关系,为每个观测值生成一个精度权重,并将其输入limma经验贝叶斯分析流程。这为RNA测序分析人员打开了通往为微阵列开发的大量方法的大门。模拟研究表明,即使数据是根据早期方法的假设生成的,voom的性能也与基于计数的RNA测序方法相当或更好。两个案例研究说明了线性建模和基因集测试方法的使用。
Genome Biol. 2014-2-3
Nucleic Acids Res. 2012-1-28
Bioinformatics. 2015-7-1
Nucleic Acids Res. 2015-11-16
BMC Bioinformatics. 2013-8-27
Bioinform Adv. 2025-8-20
Bioinform Adv. 2025-7-24
Bioinformatics. 2013-11-13
Nucleic Acids Res. 2013-4-4
BMC Bioinformatics. 2013-3-9
Stat Appl Genet Mol Biol. 2012-10-22
Nature. 2012-9-6
Nucleic Acids Res. 2012-5-25