文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

voom:精确权重为RNA测序读数计数解锁线性模型分析工具。

voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.

作者信息

Law Charity W, Chen Yunshun, Shi Wei, Smyth Gordon K

出版信息

Genome Biol. 2014 Feb 3;15(2):R29. doi: 10.1186/gb-2014-15-2-r29.


DOI:10.1186/gb-2014-15-2-r29
PMID:24485249
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4053721/
Abstract

New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods.

摘要

本文介绍了用于分析RNA测序实验读取计数的新的正态线性建模策略。voom方法估计对数计数的均值-方差关系,为每个观测值生成一个精度权重,并将其输入limma经验贝叶斯分析流程。这为RNA测序分析人员打开了通往为微阵列开发的大量方法的大门。模拟研究表明,即使数据是根据早期方法的假设生成的,voom的性能也与基于计数的RNA测序方法相当或更好。两个案例研究说明了线性建模和基因集测试方法的使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/1d1ae56d524e/gb-2014-15-2-r29-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/d2cff457705b/gb-2014-15-2-r29-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/02f6d757c616/gb-2014-15-2-r29-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/b088a5ac2ec8/gb-2014-15-2-r29-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/ec3164b5dc7c/gb-2014-15-2-r29-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/5488fcbdf03a/gb-2014-15-2-r29-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/1a5539b78775/gb-2014-15-2-r29-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/3bd71ab36850/gb-2014-15-2-r29-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/b62996e93703/gb-2014-15-2-r29-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/b418d18fe719/gb-2014-15-2-r29-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/763c15a53914/gb-2014-15-2-r29-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/1d1ae56d524e/gb-2014-15-2-r29-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/d2cff457705b/gb-2014-15-2-r29-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/02f6d757c616/gb-2014-15-2-r29-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/b088a5ac2ec8/gb-2014-15-2-r29-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/ec3164b5dc7c/gb-2014-15-2-r29-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/5488fcbdf03a/gb-2014-15-2-r29-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/1a5539b78775/gb-2014-15-2-r29-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/3bd71ab36850/gb-2014-15-2-r29-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/b62996e93703/gb-2014-15-2-r29-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/b418d18fe719/gb-2014-15-2-r29-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/763c15a53914/gb-2014-15-2-r29-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/850f/4053721/1d1ae56d524e/gb-2014-15-2-r29-11.jpg

相似文献

[1]
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.

Genome Biol. 2014-2-3

[2]
Robust identification of differentially expressed genes from RNA-seq data.

Genomics. 2020-3

[3]
Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation.

Nucleic Acids Res. 2012-1-28

[4]
PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data.

Stat Med. 2015-4-30

[5]
Joint estimation of isoform expression and isoform-specific read distribution using multisample RNA-Seq data.

Bioinformatics. 2013-12-3

[6]
SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.

Bioinformatics. 2015-7-1

[7]
Count ratio model reveals bias affecting NGS fold changes.

Nucleic Acids Res. 2015-11-16

[8]
NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data.

BMC Bioinformatics. 2013-8-27

[9]
A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.

PLoS Comput Biol. 2018-4-9

[10]
Parseq: reconstruction of microbial transcription landscape from RNA-Seq read counts using state-space models.

Bioinformatics. 2014-1-27

引用本文的文献

[1]
Decidual/placental and first trimester plasma levels of hsa-miR-199a-3p|hsa-miR-199b-3p and hsa-miR-3150b-3p are associated with insulin secretion in pregnancy.

Front Endocrinol (Lausanne). 2025-8-19

[2]
DgeaHeatmap: an R package for transcriptomic analysis and heatmap generation.

Bioinform Adv. 2025-8-20

[3]
Exploring the role of normalization and feature selection in microbiome disease classification pipelines.

Gigascience. 2025-1-6

[4]
Whole genome transcriptional analysis of intestinal biopsies and blood cells indicate genes involved in antioxidant defense systems, amino acid metabolism and antigen presentation in the pathogenesis of celiac disease.

BMC Med. 2025-8-29

[5]
Adipose tissue gene expression and longitudinal clinical phenotypes are early biomarkers of lipid-regulating drug usage.

Sci Rep. 2025-8-29

[6]
Safety and efficacy of a STAT3-targeted cyclic oligonucleotide: From murine models to a phase 1 clinical trial in pet cats with oral cancer.

Cancer Cell. 2025-8-4

[7]
The long noncoding RNA lnc-FANCI-2 intrinsically restricts RAS signaling in human papillomavirus type 16-infected cervical cancer cells.

Elife. 2025-8-29

[8]
The Oncometabolite 2-Hydroxyglutarate Is Upregulated in Post-Prostatectomy PSA Recurrence of Prostate Cancer: A Metabolomic Analysis.

Molecules. 2025-8-8

[9]
Inhibition of the Transcription Factor PU.1 Suppresses Tumor Growth in Mice by Promoting the Recruitment of Cytotoxic Lymphocytes Through the CXCL9-CXCR3 Axis.

Cancers (Basel). 2025-8-18

[10]
Gene-set enrichment analysis and visualization on the web using EnrichmentMap:RNASeq.

Bioinform Adv. 2025-7-24

本文引用的文献

[1]
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.

Bioinformatics. 2013-11-13

[2]
A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments.

BMC Bioinformatics. 2013-8-21

[3]
Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene.

Genome Biol. 2013-7-1

[4]
The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote.

Nucleic Acids Res. 2013-4-4

[5]
A comparison of methods for differential expression analysis of RNA-seq data.

BMC Bioinformatics. 2013-3-9

[6]
Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates.

Stat Appl Genet Mol Biol. 2012-10-22

[7]
A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data.

Biostatistics. 2012-9-22

[8]
Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing.

BMC Genomics. 2012-9-17

[9]
Landscape of transcription in human cells.

Nature. 2012-9-6

[10]
Camera: a competitive gene set test accounting for inter-gene correlation.

Nucleic Acids Res. 2012-5-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索