Suppr超能文献

利用动态纹理参数分析(DTPA)鉴别强化多发性硬化病变、胶质母细胞瘤和淋巴瘤:一项可行性研究。

Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study.

机构信息

Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, 3010, Switzerland.

Institute of Radiology and Neuroradiology, Tiefenau Hospital, Bern, 3004, Switzerland.

出版信息

Med Phys. 2017 Aug;44(8):4000-4008. doi: 10.1002/mp.12356. Epub 2017 Jun 30.

Abstract

PURPOSE

MR-imaging hallmarks of glioblastoma (GB), cerebral lymphoma (CL), and demyelinating lesions are gadolinium (Gd) uptake due to blood-brain barrier disruption. Thus, initial diagnosis may be difficult based on conventional Gd-enhanced MRI alone. Here, the added value of a dynamic texture parameter analysis (DTPA) in the differentiation between these three entities is examined. DTPA is an in-house software tool that incorporates the analysis of quantitative texture parameters extracted from dynamic susceptibility contrast-enhanced (DSCE) images.

METHODS

Twelve patients with multiple sclerosis (MS), 15 patients with GB, and five patients with CL were included. The image analysis method focuses on the DSCE image time series during bolus passage. Three time intervals were examined: inflow, outflow, and reperfusion time interval. Texture maps were computed. From the DSCE image series, mean, difference, standard deviation, and variance texture parameters were calculated and statistically analyzed and compared between the pathologies.

RESULTS

The texture parameters of the original DSCE image series for mean, standard deviation, and variance showed the most significant differences (P-value between <0.00 and 0.05) between pathologies. Further, the texture parameters related to the standard deviation or variance (both associated with tissue heterogeneity) revealed the strongest discriminations between the pathologies.

CONCLUSION

We conclude that dynamic perfusion texture parameters as assessed by the DTPA method allow discriminating MS, GB, and CL lesions during the first passage of contrast. DTPA used in combination with classification algorithms has the potential to find the most likely diagnosis given a postulated differential diagnosis.

摘要

目的

磁共振成像(MRI)中脑胶质母细胞瘤(GB)、脑淋巴瘤(CL)和脱髓鞘病变的特征是血脑屏障破坏导致钆(Gd)摄取。因此,仅基于常规 Gd 增强 MRI 进行初始诊断可能具有挑战性。在此,检查了动态纹理参数分析(DTPA)在这三种病变之间区分的附加值。DTPA 是一种内部软件工具,它包含从动态磁敏感对比增强(DSCE)图像中提取的定量纹理参数的分析。

方法

纳入 12 例多发性硬化症(MS)患者、15 例 GB 患者和 5 例 CL 患者。该图像分析方法主要关注于在推注过程中的 DSCE 图像时间序列。检查了三个时间间隔:流入、流出和再灌注时间间隔。计算纹理图谱。从 DSCE 图像序列中计算并统计分析均值、差异、标准差和方差纹理参数,并在病变之间进行比较。

结果

原始 DSCE 图像系列的纹理参数(均值、标准差和方差)在病变之间表现出最显著的差异(P 值介于<0.00 至 0.05 之间)。此外,与标准差或方差相关的纹理参数(均与组织异质性相关)在病变之间显示出最强的区分。

结论

我们得出结论,DTPA 方法评估的动态灌注纹理参数可在对比剂首次通过期间区分 MS、GB 和 CL 病变。DTPA 与分类算法结合使用,有可能在给定假设的鉴别诊断后找到最可能的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验