Pereira da Silva Hélio Doyle, Ascaso Carlos, Gonçalves Alessandra Queiroga, Orlandi Patricia Puccinelli, Abellana Rosa
Biostatistics Unit, Public Health Department, University of Barcelona, Barcelona, Spain.
IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
Stat Med. 2017 Sep 10;36(20):3154-3170. doi: 10.1002/sim.7339. Epub 2017 May 21.
Two key aims of diagnostic research are to accurately and precisely estimate disease prevalence and test sensitivity and specificity. Latent class models have been proposed that consider the correlation between subject measures determined by different tests in order to diagnose diseases for which gold standard tests are not available. In some clinical studies, several measures of the same subject are made with the same test under the same conditions (replicated measurements), and thus, replicated measurements for each subject are not independent. In the present study, we propose an extension of the Bayesian latent class Gaussian random effects model to fit the data with binary outcomes for tests with replicated subject measures. We describe an application using data collected on hookworm infection carried out in the municipality of Presidente Figueiredo, Amazonas State, Brazil. In addition, the performance of the proposed model was compared with that of current models (the subject random effects model and the conditional (in)dependent model) through a simulation study. As expected, the proposed model presented better accuracy and precision in the estimations of prevalence, sensitivity and specificity. Copyright © 2017 John Wiley & Sons, Ltd.
诊断研究的两个关键目标是准确且精确地估计疾病患病率以及检验敏感度和特异度。已有人提出潜在类别模型,该模型考虑由不同检验所确定的个体测量值之间的相关性,以便对尚无金标准检验的疾病进行诊断。在一些临床研究中,在相同条件下使用相同检验对同一受试者进行多次测量(重复测量),因此,每个受试者的重复测量并非相互独立。在本研究中,我们提出了贝叶斯潜在类别高斯随机效应模型的一种扩展形式,以拟合具有重复个体测量值的二元结局检验的数据。我们描述了一项应用,使用的是在巴西亚马孙州菲格雷多总统市开展的关于钩虫感染的数据收集结果。此外,通过模拟研究将所提出模型的性能与当前模型(个体随机效应模型和条件(非)独立模型)的性能进行了比较。不出所料,所提出的模型在患病率、敏感度和特异度的估计方面表现出了更高的准确性和精确性。版权所有© 2017约翰·威利父子有限公司。