Levy Ariel R, Turgeman Meital, Gevorkyan-Aiapetov Lada, Ruthstein Sharon
The Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan, 5290002, Israel.
Protein Sci. 2017 Aug;26(8):1609-1618. doi: 10.1002/pro.3197. Epub 2017 May 31.
Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X-ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site-directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.
金属伴侣蛋白负责将金属离子转运到目标蛋白。因此,金属伴侣蛋白的结构必须足够灵活,既能在穿过细胞质时保留其离子,又能将离子转移至伴侣蛋白或从伴侣蛋白处转移走。在此,我们试图阐明Atox1的结构,Atox1是一种参与人类铜调节系统的金属伴侣蛋白。Atox1将铜离子从主要的铜转运蛋白Ctr1转运至高尔基体中的ATP7b转运蛋白。由于晶体学的要求或低灵敏度和分辨率,诸如X射线或核磁共振等传统生物物理工具并不总能针对金属伴侣蛋白的各种构象状态。电子顺磁共振(EPR)光谱最近已成为解析溶液中生物反应和机制的强大工具。当与计算方法相结合时,具有定点自旋标记和纳米级距离测量功能的EPR可以提供溶液中蛋白质或蛋白质复合物的结构信息。我们使用这些方法表明,Atox1在脱辅基状态(未与铜结合)下可以容纳至少四种不同的构象,在全蛋白状态(与铜结合)下可以容纳两种不同的构象。我们还证明,全蛋白形式的Atox1结构比脱辅基形式的更紧凑。我们的数据提供了关于Atox1如何实现其铜结合和转移双重作用的结构机制的见解。