CNR-IOM at SISSA, via Bonomea 265, 34135 Trieste, Italy.
Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel.
Int J Mol Sci. 2019 Jul 14;20(14):3462. doi: 10.3390/ijms20143462.
Appropriate maintenance of Cu(I) homeostasis is an essential requirement for proper cell function because its misregulation induces the onset of major human diseases and mortality. For this reason, several research efforts have been devoted to dissecting the inner working mechanism of Cu(I)-binding proteins and transporters. A commonly adopted strategy relies on mutations of cysteine residues, for which Cu(I) has an exquisite complementarity, to serines. Nevertheless, in spite of the similarity between these two amino acids, the structural and functional impact of serine mutations on Cu(I)-binding biomolecules remains unclear. Here, we applied various biochemical and biophysical methods, together with all-atom simulations, to investigate the effect of these mutations on the stability, structure, and aggregation propensity of Cu(I)-binding proteins, as well as their interaction with specific partner proteins. Among Cu(I)-binding biomolecules, we focused on the eukaryotic Atox1-ATP7B system, and the prokaryotic CueR metalloregulator. Our results reveal that proteins containing cysteine-to-serine mutations can still bind Cu(I) ions; however, this alters their stability and aggregation propensity. These results contribute to deciphering the critical biological principles underlying the regulatory mechanism of the in-cell Cu(I) concentration, and provide a basis for interpreting future studies that will take advantage of cysteine-to-serine mutations in Cu(I)-binding systems.
适当维持 Cu(I) 内环境稳态是细胞正常功能的基本要求,因为其失调会引发多种重大人类疾病和死亡率。出于这个原因,人们投入了大量的研究努力来剖析 Cu(I)结合蛋白和转运蛋白的内在工作机制。一种常用的策略是利用精氨酸残基对 Cu(I)具有的高度互补性来进行突变,将其突变为丝氨酸。然而,尽管这两种氨基酸相似,但丝氨酸突变对 Cu(I)结合生物分子的结构和功能影响仍不清楚。在这里,我们应用了各种生化和生物物理方法,以及全原子模拟,来研究这些突变对 Cu(I)结合蛋白的稳定性、结构和聚集倾向,以及它们与特定伴侣蛋白相互作用的影响。在 Cu(I)结合生物分子中,我们专注于真核生物 Atox1-ATP7B 系统和原核生物 CueR 金属调节剂。我们的结果表明,含有半胱氨酸到丝氨酸突变的蛋白质仍然可以结合 Cu(I)离子;然而,这会改变它们的稳定性和聚集倾向。这些结果有助于破译细胞内 Cu(I)浓度调节机制的关键生物学原理,并为利用 Cu(I)结合系统中的半胱氨酸到丝氨酸突变来进行未来研究提供基础。