Suppr超能文献

根系调整:植物养分吸收的调节以及对二氧化碳浓度升高的生长响应。

Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO.

作者信息

BassiriRad Hormoz, Gutschick Vincent Peter, Lussenhop John

机构信息

Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street, 60607, Chicago, IL, USA.

Department of Biological Sciences, New Mexico State University, 88003, Las Cruces, NM, USA.

出版信息

Oecologia. 2001 Feb;126(3):305-320. doi: 10.1007/s004420000524. Epub 2001 Feb 1.

Abstract

Nutrients such as nitrogen (N) and phosphorus (P) often limit plant growth rate and production in natural and agricultural ecosystems. Limited availability of these nutrients is also a major factor influencing long-term plant and ecosystem responses to rising atmospheric CO levels, i.e., the commonly observed short-term increase in plant biomass may not be sustained over the long-term. Therefore, it is critical to obtain a mechanistic understanding of whether elevated CO can elicit compensatory adjustments such that acquisition capacity for minerals increases in concert with carbon (C) uptake. Compensatory adjustments such as increases in (a) root mycorrhizal infection, (b) root-to-shoot ratio and changes in root morphology and architecture, (c) root nutrient absorption capacity, and (d) nutrient-use efficiency can enable plants to meet an increased nutrient demand under high CO. Here we examine the literature to assess the extent to which these mechanisms have been shown to respond to high CO. The literature survey reveals no consistent pattern either in direction or magnitude of responses of these mechanisms to high CO. This apparent lack of a pattern may represent variations in experimental protocol and/or interspecific differences. We found that in addressing nutrient uptake responses to high CO most investigators have examined these mechanisms in isolation. Because such mechanisms can potentially counterbalance one another, a more reliable prediction of elevated CO responses requires experimental designs that integrate all mechanisms simultaneously. Finally, we present a functional balance (FB) model as an example of how root system adjustments and nitrogen-use efficiency can be integrated to assess growth responses to high CO. The FB model suggests that the mechanisms of increased N uptake highlighted here have different weights in determining overall plant responses to high CO. For example, while changes in root-to-shoot biomass allocation, r, have a small effect on growth, adjustments in uptake rate per unit root mass, [Formula: see text], and photosynthetic N use efficiency, p*, have a significantly greater leverage on growth responses to elevated CO except when relative growth rate (RGR) reaches its developmental limit, maximum RGR (RGR).

摘要

在自然和农业生态系统中,氮(N)和磷(P)等养分常常限制植物的生长速率和产量。这些养分的可利用性有限也是影响植物和生态系统对大气CO浓度升高长期响应的主要因素,即通常观察到的植物生物量短期增加可能无法长期持续。因此,关键是要从机制上理解CO浓度升高是否能引发补偿性调整,使矿物质获取能力与碳(C)吸收同步增加。诸如(a)根系菌根感染增加、(b)根冠比以及根系形态和结构变化、(c)根系养分吸收能力、(d)养分利用效率提高等补偿性调整,能够使植物在高CO浓度下满足增加的养分需求。在此,我们查阅文献以评估这些机制对高CO浓度响应的程度。文献调查显示,这些机制对高CO浓度的响应在方向或幅度上均无一致模式。这种明显缺乏模式的情况可能代表实验方案的差异和/或种间差异。我们发现,在研究对高CO浓度的养分吸收响应时,大多数研究者是单独研究这些机制的。由于这些机制可能相互抵消,要更可靠地预测CO浓度升高的响应,需要同时整合所有机制的实验设计。最后,我们提出一个功能平衡(FB)模型,作为根系系统调整和氮利用效率如何整合以评估对高CO浓度生长响应的示例。FB模型表明,此处强调的增加氮吸收的机制在决定植物对高CO浓度的总体响应中具有不同权重。例如,虽然根冠生物量分配变化r对生长的影响较小,但单位根质量吸收速率[公式:见原文]和光合氮利用效率p*的调整对CO浓度升高的生长响应具有显著更大的影响,除非相对生长速率(RGR)达到其发育极限,即最大RGR(RGR)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验