Suppr超能文献

生态学家和进化生物学家能够解释多少方差?

How much variance can be explained by ecologists and evolutionary biologists?

作者信息

Møller Anders, Jennions Michael D

机构信息

Laboratoire d'Ecologie Evolutive Parasitaire, CNRS UMR 7103, Université Pierre et Marie Curie, 7 quai St. Bernard, Case 237, 75252, Paris Cedex 05, France.

Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948, USA.

出版信息

Oecologia. 2002 Aug;132(4):492-500. doi: 10.1007/s00442-002-0952-2. Epub 2002 Aug 1.

Abstract

The average amount of variance explained by the main factor of interest in ecological and evolutionary studies is an important quantity because it allows evaluation of the general strength of research findings. It also has important implications for the planning of studies. Theoretically we should be able to explain 100% of the variance in data, but randomness and noise may reduce this amount considerably in biological studies. We performed a meta-analysis using data from 43 published meta-analyses in ecology and evolution with 93 estimates of mean effect size using Pearson's r and 136 estimates using Hedges' d or g. This revealed that (depending on the exact analysis) the mean amount of variance (r ) explained was 2.51-5.42%. The various 95% confidence intervals fell between 1.99 and 7.05%. There was a strongly positive relationship between the fail-safe number (the number of null results needed to nullify an effect) and the coefficient of determination (r ) or effect size. Analysis at the level of individual tests of null hypotheses showed that the amount of variance key factors explained differed among fields with the largest amount in physiological ecology, lower amounts in ecology and the lowest in evolutionary studies. In all fields though, the hypothesized relationship (e.g. main effect of a fixed treatment) explained little of the variation in the trait of interest. Our finding has important implications for the interpretation of scientific studies. Across studies, the average effect size reported is between Pearson r=0.180 and 0.193 and Hedges' d=0.631 and 0.721. Thus the average sample sizes needed to conclude that a particular relationship is absent with a power of 80% and α=0.05 (two-tailed) are considerably larger than usually recorded in studies of evolution and ecology. For example, to detect r=0.193, the required sample size is 207.

摘要

在生态与进化研究中,主要关注因素所解释的方差平均量是一个重要的量,因为它有助于评估研究结果的总体强度。它对研究规划也具有重要意义。从理论上讲,我们应该能够解释数据中100%的方差,但在生物学研究中,随机性和噪声可能会使这一数值大幅降低。我们使用来自43篇已发表的生态与进化领域的荟萃分析数据进行了一项荟萃分析,其中使用皮尔逊相关系数r对平均效应量进行了93次估计,使用赫奇斯d或g进行了136次估计。结果显示(取决于具体分析),所解释的方差平均量(r)为2.51%至5.42%。各个95%置信区间在1.99%至7.05%之间。失效安全数(使一种效应无效所需的零结果数量)与决定系数(r)或效应量之间存在强烈的正相关关系。在单个零假设检验层面的分析表明,关键因素所解释的方差量在不同领域有所不同,生理生态学领域解释量最大,生态学领域较低,进化研究领域最低。不过在所有领域中,假设的关系(如固定处理的主效应)对感兴趣性状变异的解释都很少。我们的发现对科学研究的解释具有重要意义。在各项研究中,报告的平均效应量在皮尔逊r = 0.180至0.193以及赫奇斯d = 0.631至0.721之间。因此,要在80%的检验效能和α = 0.05(双侧)的情况下得出特定关系不存在的结论,所需的平均样本量比通常在进化与生态学研究中记录的要大得多。例如,要检测到r = 0.193,所需样本量为207。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验