Balz Ben N, Reimann Peter
Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld, Germany.
Phys Rev Lett. 2017 May 12;118(19):190601. doi: 10.1103/PhysRevLett.118.190601.
We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and XXZ models.
我们考虑不发生热平衡的孤立多体量子系统;即,期望值趋近于一个(近似)稳定的长时间极限,这与平衡统计力学的微正则预测不一致。针对此类情况下典型的时间弛豫行为,我们建立了一个通用的解析理论。主要前提是初始条件要能显著填充多个能级,并且在宏观尺度上不会产生显著的空间不均匀性。该理论很好地解释了在表现出多体局域化的囚禁离子量子模拟器、超冷原子气体以及可积硬核玻色子和XXZ模型中的实验和数值结果。