Erdős László, Henheik Joscha, Reker Jana, Riabov Volodymyr
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
ENS de Lyon UMPA, 46 Allée d'Italie, 69007 Lyon, France.
Ann Henri Poincare. 2025;26(6):1991-2033. doi: 10.1007/s00023-024-01518-y. Epub 2024 Dec 17.
We prove that a class of weakly perturbed Hamiltonians of the form , with being a Wigner matrix, exhibits . That is, the time evolution generated by relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order . Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for the deformed Wigner matrix .
我们证明了一类形如 的弱扰动哈密顿量,其中 是一个维格纳矩阵,呈现出 。也就是说,由 生成的时间演化通过一个寿命为 的中间预热态弛豫到其最终热态。此外,我们得到了一个一般的弛豫公式,通过未扰动动力学和最终热态来表示扰动动力学。证明依赖于变形维格纳矩阵 的双预解式恒等式。