Mishra Saurabh, Shukla Prashant, Bhaskar Ashima, Anand Kushi, Baloni Priyanka, Jha Rajiv Kumar, Mohan Abhilash, Rajmani Raju S, Nagaraja Valakunja, Chandra Nagasuma, Singh Amit
Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.
International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
Elife. 2017 May 26;6:e25624. doi: 10.7554/eLife.25624.
() expresses a broad-spectrum β-lactamase (BlaC) that mediates resistance to one of the highly effective antibacterials, β-lactams. Nonetheless, β-lactams showed mycobactericidal activity in combination with β-lactamase inhibitor, clavulanate (Clav). However, the mechanistic aspects of how responds to β-lactams such as Amoxicillin in combination with Clav (referred as Augmentin [AG]) are not clear. Here, we identified cytoplasmic redox potential and intracellular redox sensor, WhiB4, as key determinants of mycobacterial resistance against AG. Using computer-based, biochemical, redox-biosensor, and genetic strategies, we uncovered a functional linkage between specific determinants of β-lactam resistance (e.g. β-lactamase) and redox potential in . We also describe the role of WhiB4 in coordinating the activity of β-lactamase in a redox-dependent manner to tolerate AG. Disruption of WhiB4 enhances AG tolerance, whereas overexpression potentiates AG activity against drug-resistant . Our findings suggest that AG can be exploited to diminish drug-resistance in through redox-based interventions.
()表达一种广谱β-内酰胺酶(BlaC),该酶介导对高效抗菌药物之一β-内酰胺的耐药性。尽管如此,β-内酰胺与β-内酰胺酶抑制剂克拉维酸(Clav)联合使用时显示出杀分枝杆菌活性。然而,()如何对阿莫西林等β-内酰胺与克拉维酸联合使用(称为奥格门汀[AG])作出反应的机制尚不清楚。在这里,我们确定细胞质氧化还原电位和细胞内氧化还原传感器WhiB4是分枝杆菌对AG耐药性的关键决定因素。使用基于计算机、生化、氧化还原生物传感器和基因策略,我们揭示了β-内酰胺耐药性的特定决定因素(如β-内酰胺酶)与()中氧化还原电位之间的功能联系。我们还描述了WhiB4在以氧化还原依赖方式协调β-内酰胺酶活性以耐受AG方面的作用。破坏WhiB4可增强AG耐受性,而过度表达则增强AG对耐药()的活性。我们的研究结果表明,可以通过基于氧化还原的干预措施利用AG来降低()中的耐药性。