Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
Biomaterials. 2017 Sep;138:22-34. doi: 10.1016/j.biomaterials.2017.05.028. Epub 2017 May 20.
Inhibition of influenza A virus infection by multivalent sialic acid inhibitors preventing viral hemagglutinin binding to host cells of the respiratory tract is a promising strategy. However, optimal geometry and optimal ligand presentation on multivalent scaffolds for efficient inhibition both in vitro and in vivo application are still unclear. Here, by comparing linear and dendritic polyglycerol sialosides (LPGSA and dPGSA) we identified architectural requirements and optimal ligand densities for an efficient multivalent inhibitor of influenza virus A/X31/1 (H3N2). Due to its large volume, the LPGSA at optimal ligand density sterically shielded the virus significantly better than the dendritic analog. A statistical mechanics model rationalizes the relevance of ligand density, morphology, and the size of multivalent scaffolds for the potential to inhibit virus-cell binding. Optimized LPGSA inhibited virus infection at IC in the low nanomolar nanoparticle concentration range and also showed potent antiviral activity against two avian influenza strains A/Mallard/439/2004 (H3N2) and A/turkey/Italy/472/1999 (H7N1) post infection. In vivo application of inhibitors clearly confirmed the higher inhibition potential of linear multivalent scaffolds to prevent infection. The optimized LPGSA did not show any acute toxicity, and was much more potent than the neuraminidase inhibitor oseltamivir carboxylate in vivo. Combined application of the LPGSA and oseltamivir carboxylate revealed a synergistic inhibitory effect and successfully prevented influenza virus infection in mice.
抑制流感病毒感染的多价唾液酸抑制剂可以阻止病毒血凝素与呼吸道宿主细胞结合,这是一种很有前途的策略。然而,在体外和体内应用中,最佳的几何形状和最佳的配体在多价支架上的呈现,以实现有效的抑制作用,仍然不清楚。在这里,通过比较线性和树枝状聚甘油唾液酸(LPGSA 和 dPGSA),我们确定了有效的流感病毒 A/X31/1(H3N2)多价抑制剂的结构要求和最佳配体密度。由于其体积较大,最佳配体密度的 LPGSA 在空间上比树枝状类似物更能显著屏蔽病毒。统计力学模型合理地解释了配体密度、形态和多价支架的大小对于抑制病毒与细胞结合的潜力的相关性。优化后的 LPGSA 在低纳摩尔纳米颗粒浓度范围内的 IC 时抑制病毒感染,并且对两种禽流感病毒株 A/Mallard/439/2004(H3N2)和 A/turkey/Italy/472/1999(H7N1)的感染后也显示出很强的抗病毒活性。抑制剂的体内应用清楚地证实了线性多价支架预防感染的更高抑制潜力。优化后的 LPGSA 没有表现出任何急性毒性,并且在体内比神经氨酸酶抑制剂奥司他韦羧酸盐更有效。LPGSA 和奥司他韦羧酸盐的联合应用显示出协同抑制作用,并成功地预防了小鼠流感病毒感染。