González-Ferrer Arturo, Valcárcel M Ángel, Cuesta Martín, Cháfer Joan, Runkle Isabelle
Unidad de Innovación, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
Unidad de Innovación, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
Int J Med Inform. 2017 Jul;103:55-64. doi: 10.1016/j.ijmedinf.2017.04.014. Epub 2017 Apr 19.
Hyponatremia is the most common type of electrolyte imbalance, occurring when serum sodium is below threshold levels, typically 135mmol/L. Electrolyte balance has been identified as one of the most challenging subjects for medical students, but also as one of the most relevant areas to learn about according to physicians and researchers. We present a computer-interpretable guideline (CIG) model that will be used for medical training to learn how to improve the diagnosis of hyponatremia applying an expert consensus document (ECDs).
We used the PROForma set of tools to develop the model, using an iterative process involving two knowledge engineers (a computer science Ph.D. and a preventive medicine specialist) and two expert endocrinologists. We also carried out an initial validation of the model and a qualitative post-analysis from the results of a retrospective study (N=65 patients), comparing the consensus diagnosis of two experts with the output of the tool.
The model includes over two-hundred "for", "against" and "neutral" arguments that are selectively triggered depending on the input value of more than forty patient-state variables. We share the methodology followed for the development process and the initial validation results, that achieved a high ratio of 61/65 agreements with the consensus diagnosis, having a kappa value of K=0.86 for overall agreement and K=0.80 for first-ranked agreement.
Hospital care professionals involved in the project showed high expectations of using this tool for training, but the process to follow for a successful diagnosis and application is not trivial, as reported in this manuscript. Secondary benefits of using these tools are associated to improving research knowledge and existing clinical practice guidelines (CPGs) or ECDs. Beyond point-of-care clinical decision support, knowledge-based decision support systems are very attractive as a training tool, to help selected professionals to better understand difficult diseases that are underdiagnosed and/or incorrectly managed.
低钠血症是最常见的电解质失衡类型,当血清钠低于阈值水平(通常为135mmol/L)时发生。电解质平衡已被确定为医学生最具挑战性的学科之一,但也是医生和研究人员认为最值得学习的相关领域之一。我们提出了一种计算机可解释指南(CIG)模型,该模型将用于医学培训,以学习如何应用专家共识文件(ECD)改善低钠血症的诊断。
我们使用PROForma工具集来开发该模型,采用了一个迭代过程,涉及两名知识工程师(一名计算机科学博士和一名预防医学专家)和两名内分泌专家。我们还对该模型进行了初步验证,并根据一项回顾性研究(N = 65例患者)的结果进行了定性事后分析,将两名专家的共识诊断与该工具的输出进行了比较。
该模型包括两百多个“支持”“反对”和“中性”论点,这些论点根据四十多个患者状态变量的输入值有选择地触发。我们分享了开发过程中遵循的方法和初步验证结果,该结果与共识诊断达成了61/65的高一致率,总体一致性的kappa值为K = 0.86,首位一致性的kappa值为K = 0.80。
参与该项目的医院护理专业人员对使用该工具进行培训寄予厚望,但正如本手稿中所报道的那样,成功诊断和应用所遵循的过程并非易事。使用这些工具的次要好处与提高研究知识以及现有临床实践指南(CPG)或ECD有关。除了即时护理临床决策支持之外,基于知识的决策支持系统作为一种培训工具非常有吸引力,可帮助选定的专业人员更好地理解诊断不足和/或管理不当的疑难疾病。