Suppr超能文献

中枢神经系统中的高级扩散磁共振成像与生物标志物:一种新方法。

Advanced diffusion MRI and biomarkers in the central nervous system: a new approach.

作者信息

Martín Noguerol T, Martínez Barbero J P

机构信息

Sección de Neurorradiología. Clínica las Nieves. SERCOSA. Grupo HealthTime, Jaén, España.

Sección de Neurorradiología. Clínica las Nieves. SERCOSA. Grupo HealthTime, Jaén, España.

出版信息

Radiologia. 2017 Jul-Aug;59(4):273-285. doi: 10.1016/j.rx.2017.04.009. Epub 2017 May 26.

Abstract

The introduction of diffusion-weighted sequences has revolutionized the detection and characterization of central nervous system (CNS) disease. Nevertheless, the assessment of diffusion studies of the CNS is often limited to qualitative estimation. Moreover, the pathophysiological complexity of the different entities that affect the CNS cannot always be correctly explained through classical models. The development of new models for the analysis of diffusion sequences provides numerous parameters that enable a quantitative approach to both diagnosis and prognosis as well as to monitoring the response to treatment; these parameters can be considered potential biomarkers of health and disease. In this update, we review the physical bases underlying diffusion studies and diffusion tensor imaging, advanced models for their analysis (intravoxel coherent motion and kurtosis), and the biological significance of the parameters derived.

摘要

扩散加权序列的引入彻底改变了中枢神经系统(CNS)疾病的检测和特征描述。然而,对CNS扩散研究的评估往往仅限于定性估计。此外,影响CNS的不同实体的病理生理复杂性并非总能通过经典模型得到正确解释。用于分析扩散序列的新模型的开发提供了众多参数,这些参数能够对诊断、预后以及治疗反应监测进行定量分析;这些参数可被视为健康和疾病的潜在生物标志物。在本次更新中,我们回顾了扩散研究和扩散张量成像的物理基础、用于其分析的先进模型(体素内相干运动和峰度)以及所得参数的生物学意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验