Suppr超能文献

Cationic channels activated by extracellular ATP in rat sensory neurons.

作者信息

Krishtal O A, Marchenko S M, Obukhov A G

机构信息

Department of Physico-Chemical Biology of Cell Membranes, A.A. Bogomoletz Institute of Physiology, Academy of Sciences of the Ukrainian S.S.R., Kiev, U.S.S.R.

出版信息

Neuroscience. 1988 Dec;27(3):995-1000. doi: 10.1016/0306-4522(88)90203-5.

Abstract

Single channels activated by externally applied ATP were investigated in cultured sensory neurons from nodosal and spinal ganglia of rat using patch clamp and concentration clamp methods. Mean conductance of single ATP-activated channels was 17 pS when measured at a holding potential of -75 mV in saline containing 3 mM Ca2+ and 1 mM Mg2+. Sublevels of conductance were detected in some cases. The current-voltage relationship for a single channel is highly non-linear and demonstrates inwardly directed rectification. The I-V curve obtained for single channels was identical to that for macroscopic current. ATP activated the channels in the absence of divalent cations (in ethylenediaminetetra-acetate-containing medium) as well as in their presence. This indicates that ATP as a free anion can activate the receptor. Ca2+ ions decreased both macro- and microscopic ATP-activated currents. The concentration dependence of this Ca2+ effect does not fit a single site binding isotherm. The single channel current demonstrated prominent fluctuations. When measured in the 0-4 kHz frequency band the amplitude of fluctuations evaluated as a double r.m.s. was about 30% of the mean amplitude of current. The autocorrelation function for the current fluctuations in an open channel could be approximated by a single exponential with the time constant of 0.4 ms. These fluctuations did not depend on the presence of divalent cations in the external medium. The open time distribution for the investigated channels could be described by a sum of two exponentials. Presumably this reflects the existence of two subtypes of ATP-activated channels.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验