Suppr超能文献

牛蛙心房肌细胞钙电流的反转电位

Reversal potential of the calcium current in bull-frog atrial myocytes.

作者信息

Campbell D L, Giles W R, Hume J R, Noble D, Shibata E F

机构信息

Department of Medical Physiology, University of Calgary School of Medicine, Alberta, Canada.

出版信息

J Physiol. 1988 Sep;403:267-86. doi: 10.1113/jphysiol.1988.sp017249.

Abstract
  1. Voltage clamp recordings of the calcium current (ICa) in single myocytes which were enzymatically isolated from bull-frog atrium show that a genuine reversal of the current flowing through Ca2+ channels can be recorded (ef. Reuter & Scholz, 1977; Lee & Tsien, 1982, 1984; Campbell, Giles & Shibata, 1988c). In normal 2.5 mM [Ca2+]0 Ringer solution this apparent reversal potential (Erev) is near +50 mV, a value well below the predicted thermodynamic Ca2+ equilibrium potential (ECa). 2. None the less, Erev shifts with variations in extracellular divalent ion concentrations (Ca2+, Sr2+ and Ba2+) according to the predictions of a Nernstian divalent cation electrode, i.e. approximately 29 mV per 10-fold change in the external concentration of divalent ion. 3. The existing theoretical analysis of this Erev has been extended in order to clarify its interpretation with regard to the selectivity characteristics of ICa. 4. The apparent reversal potential is analysed using a form of the constant field equation which has been modified to include (i) simultaneous monovalent and divalent cation movements and (ii) the presence of a surface potential (V'). This equation can be solved to yield an explicit expression for Erev. The effects of V' on apparent permeability ratios for the Ca2+ channel Erev are demonstrated. 5. In combination, our experimental results and calculations suggest that: (i) previous estimates of V' which were used to describe permeability (P) ratios of Ca2+ channels in various cardiac preparations may be in error, (ii) in normal [Ca2+]o the PNa/PCa ratio is very small, and (iii) PCa/PK must be greater than 1000. An analysis of the relative selectivity of the channel for divalent cations compared to K+ shows that PCa greater than PSr greater than PBa, assuming that PK remains the same after the divalent substitutions. 6. The Ca2+ channel in bull-frog atrial cells is thus much more selective for Ca2+ ions than had previously been estimated; in particular, inward flow of monovalent cations (e.g. Na+) through these channels does not contribute significantly to the observed ICa. The physiological implications of this high selectivity for Ca2+ ions are discussed.
摘要
  1. 对从牛蛙心房酶解分离出的单个心肌细胞的钙电流(ICa)进行电压钳记录表明,可以记录到通过Ca2+通道的电流的真正反转(参见Reuter和Scholz,1977;Lee和Tsien,1982,1984;Campbell、Giles和Shibata,1988c)。在正常的2.5 mM [Ca2+]0林格溶液中,这个明显的反转电位(Erev)接近 +50 mV,该值远低于预测的热力学Ca2+平衡电位(ECa)。2. 尽管如此,根据能斯特二价阳离子电极的预测,Erev会随着细胞外二价离子浓度(Ca2+、Sr2+和Ba2+)的变化而移动,即外部二价离子浓度每变化10倍,Erev大约移动29 mV。3. 对这个Erev的现有理论分析已经得到扩展,以阐明其关于ICa选择性特征的解释。4. 使用常数场方程的一种形式对明显的反转电位进行分析,该方程已被修改以包括(i)单价和二价阳离子的同时移动以及(ii)表面电位(V')的存在。这个方程可以求解以得出Erev的明确表达式。证明了V'对Ca2+通道Erev的明显通透率比的影响。5. 综合起来,我们的实验结果和计算表明:(i)以前用于描述各种心脏制剂中Ca2+通道通透率(P)比的V'估计值可能有误,(ii)在正常[Ca2+]o中,PNa/PCa比非常小,并且(iii)PCa/PK必须大于1000。对通道相对于K+对二价阳离子的相对选择性分析表明,假设在二价替代后PK保持不变,则PCa大于PSr大于PBa。6. 因此,牛蛙心房细胞中的Ca2+通道对Ca2+离子的选择性比以前估计的要高得多;特别是,单价阳离子(例如Na+)通过这些通道的内向流动对观察到的ICa贡献不大。讨论了这种对Ca2+离子的高选择性的生理意义。

相似文献

1
Reversal potential of the calcium current in bull-frog atrial myocytes.
J Physiol. 1988 Sep;403:267-86. doi: 10.1113/jphysiol.1988.sp017249.
2
Ion transfer characteristics of the calcium current in bull-frog atrial myocytes.
J Physiol. 1988 Sep;403:239-66. doi: 10.1113/jphysiol.1988.sp017248.
3
Inactivation of calcium current in bull-frog atrial myocytes.
J Physiol. 1988 Sep;403:287-315. doi: 10.1113/jphysiol.1988.sp017250.
4
Studies of the sodium-calcium exchanger in bull-frog atrial myocytes.
J Physiol. 1988 Sep;403:317-40. doi: 10.1113/jphysiol.1988.sp017251.
5
High selectivity of calcium channels in single dialysed heart cells of the guinea-pig.
J Physiol. 1984 Sep;354:253-72. doi: 10.1113/jphysiol.1984.sp015374.
9
Electrophysiology of parasympathetic neurones isolated from the interatrial septum of bull-frog heart.
J Physiol. 1990 Aug;427:89-125. doi: 10.1113/jphysiol.1990.sp018163.
10

引用本文的文献

1
Emerging methods to model cardiac ion channel and myocyte electrophysiology.
Biophys Rev (Melville). 2023 Mar;4(1):011315. doi: 10.1063/5.0127713. Epub 2023 Mar 30.
2
Models of the cardiac L-type calcium current: A quantitative review.
WIREs Mech Dis. 2023 Jan;15(1):e1581. doi: 10.1002/wsbm.1581. Epub 2022 Aug 26.
3
Ca entry through Na channels generates submillisecond axonal Ca signaling.
Elife. 2020 Jun 17;9:e54566. doi: 10.7554/eLife.54566.
5
An excess-calcium-binding-site model predicts neurotransmitter release at the neuromuscular junction.
Biophys J. 2013 Jun 18;104(12):2751-63. doi: 10.1016/j.bpj.2013.05.023.
6
Asymmetry in membrane responses to electric shocks: insights from bidomain simulations.
Biophys J. 2004 Oct;87(4):2271-82. doi: 10.1529/biophysj.104.043091.
7
Cholinergic modulation of the basal L-type calcium current in ferret right ventricular myocytes.
J Physiol. 2002 Jul 1;542(Pt 1):107-17. doi: 10.1113/jphysiol.2002.017335.
8
Ca2+ influx via the L-type Ca2+ channel during tail current and above current reversal potential in ferret ventricular myocytes.
J Physiol. 2000 Feb 15;523 Pt 1(Pt 1):57-66. doi: 10.1111/j.1469-7793.2000.t01-2-00057.x.
9
Nonglutamate pore residues in ion selection and conduction in voltage-gated Ca2+ channels.
Biophys J. 1999 Nov;77(5):2575-89. doi: 10.1016/s0006-3495(99)77092-x.
10
Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.
J Physiol. 1996 Jun 15;493 ( Pt 3)(Pt 3):733-46. doi: 10.1113/jphysiol.1996.sp021418.

本文引用的文献

1
POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES.
J Gen Physiol. 1943 Sep 20;27(1):37-60. doi: 10.1085/jgp.27.1.37.
2
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
3
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):449-72. doi: 10.1113/jphysiol.1952.sp004717.
4
Sodium permeability in toad nerve and in squid nerve.
J Physiol. 1960 Jun;152(1):159-66. doi: 10.1113/jphysiol.1960.sp006477.
5
The ionic requirements for the production of action potentials in crustacean muscle fibres.
J Physiol. 1958 Aug 6;142(3):516-43. doi: 10.1113/jphysiol.1958.sp006034.
9
Control of ion distribution in isolated smooth muscle cells. I. Potassium.
J Gen Physiol. 1980 Feb;75(2):163-82. doi: 10.1085/jgp.75.2.163.
10
Determination of ionic calcium in frog skeletal muscle fibers.
Biophys J. 1983 Jul;43(1):1-4. doi: 10.1016/S0006-3495(83)84316-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验