Limones-Herrero Daniel, Pérez-Ruiz Raúl, Lence Emilio, González-Bello Concepción, Miranda Miguel A, Jiménez M Consuelo
Departamento de Química/Instituto de Tecnología Química UPV-CSIC , Universitat Politècnica de València , Camino de Vera s/n , 46022 , Valencia , Spain . Email:
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , C/ Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain.
Chem Sci. 2017 Apr 1;8(4):2621-2628. doi: 10.1039/c6sc04900a. Epub 2017 Jan 5.
A multidisciplinary strategy to obtain structural information on the intraprotein region is described here. As probe ligands, ()- and ()- (the methyl esters of the chiral drug carprofen) have been selected, while bovine α-acid glycoprotein (BAAG) has been chosen as a biological host. The procedure involves the separate irradiation of the BAAG/()- and BAAG/()- complexes, coupled with fluorescence spectroscopy, laser flash photolysis, proteomic analysis, docking and molecular dynamics simulations. Thus, irradiation of the BAAG/ complexes at = 320 nm was followed by fluorescence spectroscopy. The intensity of the emission band obtained after irradiation indicated photodehalogenation, whereas its structureless shape suggested covalent binding of the resulting radical to the biopolymer. After gel filtration chromatography, the spectra still displayed emission, in agreement with covalent attachment of to BAAG. Stereodifferentiation was observed in this process. After trypsin digestion and ESI-MS/MS, the incorporation of was detected at Phe68. Docking and molecular dynamics simulation studies, which were carried out using a homology model of BAAG, reveal that the closer proximity of the aromatic moiety of the ()-enantiomer to the phenyl group of Phe68 would be responsible for the experimentally observed, more effective chemical modification of the protein. The proposed tridimensional structure of BAAG covalently modified by the two enantiomers is also provided. In principle, this approach can be extended to a variety of protein/ligand complexes.
本文描述了一种用于获取蛋白质内部区域结构信息的多学科策略。作为探针配体,选择了()-和()-(手性药物卡洛芬的甲酯),而牛α-酸性糖蛋白(BAAG)被选作生物宿主。该过程包括分别照射BAAG/()-和BAAG/()-复合物,并结合荧光光谱、激光闪光光解、蛋白质组学分析、对接和分子动力学模拟。因此,在320nm处照射BAAG/复合物后进行荧光光谱分析。照射后获得的发射带强度表明发生了光脱卤反应,而其无结构的形状表明生成的自由基与生物聚合物发生了共价结合。经过凝胶过滤色谱后,光谱仍显示出发射,这与与BAAG的共价连接一致。在此过程中观察到了立体分化。在胰蛋白酶消化和ESI-MS/MS分析后,在Phe68处检测到了的掺入。使用BAAG的同源模型进行的对接和分子动力学模拟研究表明,()-对映体的芳香部分与Phe68的苯基更接近,这将导致实验观察到的蛋白质更有效的化学修饰。还提供了由两种对映体共价修饰的BAAG的三维结构。原则上,这种方法可以扩展到各种蛋白质/配体复合物。