Bays Jennifer L, Campbell Hannah K, Heidema Christy, Sebbagh Michael, DeMali Kris A
Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
Interdisciplinary Graduate Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
Nat Cell Biol. 2017 Jun;19(6):724-731. doi: 10.1038/ncb3537. Epub 2017 May 29.
The response of cells to mechanical force is a major determinant of cell behaviour and is an energetically costly event. How cells derive energy to resist mechanical force is unknown. Here, we show that application of force to E-cadherin stimulates liver kinase B1 (LKB1) to activate AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis. LKB1 recruits AMPK to the E-cadherin mechanotransduction complex, thereby stimulating actomyosin contractility, glucose uptake and ATP production. The increase in ATP provides energy to reinforce the adhesion complex and actin cytoskeleton so that the cell can resist physiological forces. Together, these findings reveal a paradigm for how mechanotransduction and metabolism are linked and provide a framework for understanding how diseases involving contractile and metabolic disturbances arise.
细胞对机械力的反应是细胞行为的主要决定因素,且是一个能量消耗巨大的过程。细胞如何获取能量来抵抗机械力尚不清楚。在此,我们表明对E-钙黏蛋白施加力会刺激肝激酶B1(LKB1)激活AMP激活的蛋白激酶(AMPK),AMPK是能量稳态的主要调节因子。LKB1将AMPK招募到E-钙黏蛋白机械转导复合物中,从而刺激肌动球蛋白收缩性、葡萄糖摄取和ATP生成。ATP的增加为加强黏附复合物和肌动蛋白细胞骨架提供能量,以便细胞能够抵抗生理力。总之,这些发现揭示了机械转导与代谢如何联系的范例,并为理解涉及收缩和代谢紊乱的疾病如何产生提供了框架。