Trakselis Michael A, Seidman Michael M, Brosh Robert M
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States.
Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Baltimore, MD 21224, United States.
DNA Repair (Amst). 2017 Jul;55:76-82. doi: 10.1016/j.dnarep.2017.05.005. Epub 2017 May 20.
Before leaving the house, it is a good idea to check for road closures that may affect the morning commute. Otherwise, one may encounter significant delays arriving at the destination. While this is commonly true, motorists may be able to consult a live interactive traffic map and pick an alternate route or detour to avoid being late. However, this is not the case if one needs to catch the train which follows a single track to the terminus; if something blocks the track, there is a delay. Such is the case for the DNA replisome responsible for copying the genetic information that provides the recipe of life. When the replication machinery encounters a DNA roadblock, the outcome can be devastating if the obstacle is not overcome in an efficient manner. Fortunately, the cell's DNA synthesis apparatus can bypass certain DNA obstructions, but the mechanism(s) are still poorly understood. Very recently, two papers from the O'Donnell lab, one structural (Georgescu et al., 2017 [1]) and the other biochemical (Langston and O'Donnell, 2017 [2]), have challenged the conventional thinking of how the replicative CMG helicase is arranged on DNA, unwinds double-stranded DNA, and handles barricades in its path. These new findings raise important questions in the search for mechanistic insights into how DNA is copied, particularly when the replication machinery encounters a roadblock.
出门前,最好查看一下可能影响早高峰通勤的道路封闭情况。否则,可能会在到达目的地时遇到严重延误。虽然通常情况如此,但驾车者可以查看实时交互式交通地图,选择替代路线或绕行以避免迟到。然而,如果要赶乘单轨直达终点站的火车,情况就不同了;如果轨道被什么东西挡住,就会出现延误。负责复制提供生命蓝图的遗传信息的DNA复制体就是这种情况。当复制机制遇到DNA障碍时,如果不能有效地克服这个障碍,结果可能是毁灭性的。幸运的是,细胞的DNA合成装置可以绕过某些DNA障碍物,但其机制仍知之甚少。最近,奥多内尔实验室发表的两篇论文,一篇是结构方面的(乔治斯库等人,2017年[1]),另一篇是生化方面的(兰斯顿和奥多内尔,2017年[2]),对复制性CMG解旋酶如何在DNA上排列、解开双链DNA以及处理其路径上的障碍的传统观点提出了挑战。这些新发现为深入了解DNA复制机制提出了重要问题,尤其是当复制机制遇到障碍时。