Gutiérrez M, López-González M, Sánchez F, Douhal A
Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
Departamento de Química-Física de Polímeros, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC). C/Juan de la Cierva 3, 28006 Madrid, Spain.
Phys Chem Chem Phys. 2017 Jul 21;19(27):17544-17552. doi: 10.1039/c7cp02094e. Epub 2017 May 30.
Light harvesting is a natural phenomenon that scientists try to mimic in artificial systems. Having this in mind, attention has been focused on using new smart-materials for photonics. Herein, we report on the photobehaviour of a Zr-NDC MOF (NDC = dimethyl 2,6-naphthalenedicarboxylate) and its composite material, Coumarin153@Zr-NDC, embedded within a polymeric membrane of poly[bisphenol A carbonate-co-4,4'-(3,3,5-trimethylcyclohexylidene)diphenol carbonate] (PC). For the mixed matrix membrane (MMM) Zr-NDC/PC, we observed interparticle excimer-like formation, taking place in times shorter than 15 ps and giving rise to a red-shifted broad emission band. The interparticle interactions are supported by the SEM images, as they reflect the contact between the MOF crystals. The C153@Zr-NDC/PC material presents an energy transfer (ET) process from the excited MOF to the trapped C153 molecules in 820 ps, with a 35 nm red-shifted emission band corresponding to C153 in PC. The fluorescence quantum yield, as a result of this ET from the MOF, is high enough (25%) to explore the possibility of using this new composite material in a LED device. To elucidate the observed photobehavior, we compared it with those of C153/PC and (2,6-NDC + C153)/PC films. These results shed light on the spectroscopic and dynamical properties of these new composite materials formed by a highly fluorescent molecule, and easily synthesized MOFs and polymeric matrices, opening the way for more research based on these mixed inorganic and organic compounds for possible applications in the fields of luminescence sensing and emitting devices.
光捕获是一种自然现象,科学家们试图在人工系统中对其进行模拟。考虑到这一点,人们的注意力已集中在将新型智能材料用于光子学领域。在此,我们报告了一种锆-萘二甲酸二甲酯金属有机框架(MOF)(NDC = 2,6-萘二甲酸二甲酯)及其复合材料香豆素153@Zr-NDC的光行为,该复合材料嵌入在聚[双酚A碳酸酯-co-4,4'-(3,3,5-三甲基环己叉基)二酚碳酸酯](PC)的聚合物膜中。对于混合基质膜(MMM)Zr-NDC/PC,我们观察到颗粒间准分子样的形成,其发生时间短于15皮秒,并产生红移的宽发射带。扫描电子显微镜(SEM)图像证实了颗粒间的相互作用,因为它们反映了MOF晶体之间的接触。C153@Zr-NDC/PC材料在820皮秒内呈现出从激发的MOF到捕获的C153分子的能量转移(ET)过程,对应于PC中C153的发射带红移了35纳米。由于这种来自MOF的ET,荧光量子产率足够高(25%),从而可以探索在发光二极管(LED)器件中使用这种新型复合材料的可能性。为了阐明观察到的光行为,我们将其与C153/PC和(2,6-NDC + C153)/PC薄膜的光行为进行了比较。这些结果揭示了由高荧光分子、易于合成的MOF和聚合物基质形成的这些新型复合材料的光谱和动力学性质,为基于这些无机和有机混合化合物在发光传感和发光器件领域的可能应用开展更多研究开辟了道路。