State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
Angew Chem Int Ed Engl. 2017 Jul 3;56(28):8139-8143. doi: 10.1002/anie.201703406. Epub 2017 Jun 12.
Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.
活细胞中蛋白质特异性糖型的成像对于阐明糖基化机制和鉴定疾病状态非常重要。目前使用的代谢寡糖工程(MOE)技术允许对感兴趣的碳水化合物位点进行常规的全局化学重塑(GCM),但会产生不必要的全细胞范围的干扰,并产生不可预测的代谢效率问题。本文报道了一种用于高效可靠地获取蛋白质特异性糖型信息的局部化学重塑(LCM)策略。针对 MUC1 特异性末端半乳糖/N-乙酰半乳糖胺(Gal/GalNAc)开发的概念验证方案结合了亲和结合、开/关可切换催化活性和邻近催化,为生物正交标记和成像创建了一个反应性处理。与 MOE 相比,LCM 的显著特点包括对靶细胞的最小干扰、短反应时间框架、作为分子标尺的有效性和定量分析能力。