Suppr超能文献

共轭化学物质或药物对 RNA 纳米颗粒体内生物分布的疏水效应。

Hydrophobic Effect from Conjugated Chemicals or Drugs on In Vivo Biodistribution of RNA Nanoparticles.

机构信息

College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio.

出版信息

Hum Gene Ther. 2018 Jan;29(1):77-86. doi: 10.1089/hum.2017.054. Epub 2017 Oct 12.

Abstract

Liver or other organ accumulation of drugs is one of the major problems that leads to toxicity and side effects in therapy using chemicals or other macromolecules. It has been shown that specially designed RNA nanoparticles can specifically target cancer cells, silence oncogenic genes, and stop cancer growth with little or no accumulation in the liver or other vital organs. It is well known that physical properties of nanoparticles such as size, shape, and surface chemistry affect biodistribution and pharmacokinetic profiles in vivo. This study examined how the hydrophobicity of chemicals conjugated to RNA nanoparticles affect in vivo biodistribution. Weaker organ accumulation was observed for hydrophobic chemicals after they were conjugated to RNA nanoparticles, revealing RNA's ability to solubilize hydrophobic chemicals. It was found that different chemicals conjugated to RNA nanoparticles resulted in the alteration of RNA hydrophobicity. Stronger hydrophobicity induced by chemical conjugates resulted in higher accumulation of RNA nanoparticles in vital organs in mice. This study provides new insights for handling drug insolubility, therapeutic toxicity, and organ clearance in drug development.

摘要

肝脏或其他器官中药物的蓄积是导致化学物质或其他大分子药物治疗产生毒性和副作用的主要问题之一。研究表明,专门设计的 RNA 纳米颗粒可以特异性地靶向癌细胞,沉默致癌基因,并阻止癌症生长,而在肝脏或其他重要器官中几乎没有蓄积。众所周知,纳米颗粒的物理性质,如大小、形状和表面化学性质,会影响体内的生物分布和药代动力学特征。本研究探讨了与 RNA 纳米颗粒偶联的化学物质的疏水性如何影响体内的生物分布。研究发现,与 RNA 纳米颗粒偶联后,疏水性化学物质在体内的器官蓄积减少,这表明 RNA 具有增溶疏水性化学物质的能力。研究还发现,与 RNA 纳米颗粒偶联的不同化学物质会导致 RNA 疏水性的改变。化学偶联物诱导的疏水性增强会导致 RNA 纳米颗粒在小鼠重要器官中的蓄积增加。这项研究为解决药物溶解度、治疗毒性和药物开发中的器官清除问题提供了新的思路。

相似文献

1
Hydrophobic Effect from Conjugated Chemicals or Drugs on In Vivo Biodistribution of RNA Nanoparticles.
Hum Gene Ther. 2018 Jan;29(1):77-86. doi: 10.1089/hum.2017.054. Epub 2017 Oct 12.
2
Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy.
Cancer Lett. 2018 Feb 1;414:57-70. doi: 10.1016/j.canlet.2017.09.043. Epub 2017 Oct 5.
3
The Effect of Size and Shape of RNA Nanoparticles on Biodistribution.
Mol Ther. 2018 Mar 7;26(3):784-792. doi: 10.1016/j.ymthe.2017.12.018. Epub 2017 Dec 22.
5
Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application.
Nanomedicine (Lond). 2018 Jun;13(12):1495-1512. doi: 10.2217/nnm-2018-0040. Epub 2018 Jul 4.
6
Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.
ACS Nano. 2015 Oct 27;9(10):9731-40. doi: 10.1021/acsnano.5b02471. Epub 2015 Sep 21.
7
Surface engineering of inorganic nanoparticles for imaging and therapy.
Adv Drug Deliv Rev. 2013 May;65(5):622-48. doi: 10.1016/j.addr.2012.08.015. Epub 2012 Sep 6.
8
and Evaluation of the Pathology and Safety Aspects of Three- and Four-Way Junction RNA Nanoparticles.
Mol Pharm. 2024 Feb 5;21(2):718-728. doi: 10.1021/acs.molpharmaceut.3c00845. Epub 2024 Jan 12.
9
Radiolabeled RNA Nanoparticles for Highly Specific Targeting and Efficient Tumor Accumulation with Favorable Biodistribution.
Mol Pharm. 2021 Aug 2;18(8):2924-2934. doi: 10.1021/acs.molpharmaceut.1c00035. Epub 2021 Jul 2.
10
Functional assays for specific targeting and delivery of RNA nanoparticles to brain tumor.
Methods Mol Biol. 2015;1297:137-52. doi: 10.1007/978-1-4939-2562-9_10.

引用本文的文献

2
RNA nanostructures for targeted drug delivery and imaging.
RNA Biol. 2024 Jan;21(1):1-19. doi: 10.1080/15476286.2024.2328440. Epub 2024 Mar 31.
3
Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome.
Acta Pharm Sin B. 2023 Apr;13(4):1383-1399. doi: 10.1016/j.apsb.2022.11.019. Epub 2022 Nov 17.
5
The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development.
Adv Drug Deliv Rev. 2022 Jul;186:114316. doi: 10.1016/j.addr.2022.114316. Epub 2022 May 5.
6
Targeting vascular inflammation through emerging methods and drug carriers.
Adv Drug Deliv Rev. 2022 May;184:114180. doi: 10.1016/j.addr.2022.114180. Epub 2022 Mar 7.
7
Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management.
Nanomaterials (Basel). 2021 Dec 8;11(12):3330. doi: 10.3390/nano11123330.
8
3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the biodistribution.
Nano Res. 2020 Dec;13(12):3241-3247. doi: 10.1007/s12274-020-2996-1. Epub 2020 Sep 4.
10
Non-Small-Cell Lung Cancer Regression by siRNA Delivered Through Exosomes That Display EGFR RNA Aptamer.
Nucleic Acid Ther. 2021 Oct;31(5):364-374. doi: 10.1089/nat.2021.0002. Epub 2021 May 17.

本文引用的文献

1
RNA Nanoparticle-Based Targeted Therapy for Glioblastoma through Inhibition of Oncogenic miR-21.
Mol Ther. 2017 Jul 5;25(7):1544-1555. doi: 10.1016/j.ymthe.2016.11.016. Epub 2017 Jan 18.
2
Overcoming Tamoxifen Resistance of Human Breast Cancer by Targeted Gene Silencing Using Multifunctional pRNA Nanoparticles.
ACS Nano. 2017 Jan 24;11(1):335-346. doi: 10.1021/acsnano.6b05910. Epub 2016 Dec 16.
3
RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery.
Nanomedicine. 2017 Apr;13(3):1183-1193. doi: 10.1016/j.nano.2016.11.015. Epub 2016 Nov 25.
4
Fabrication of RNA 3D Nanoprisms for Loading and Protection of Small RNAs and Model Drugs.
Adv Mater. 2016 Dec;28(45):10079-10087. doi: 10.1002/adma.201603180. Epub 2016 Oct 19.
5
Controllable Self-Assembly of RNA Tetrahedrons with Precise Shape and Size for Cancer Targeting.
Adv Mater. 2016 Sep;28(34):7501-7. doi: 10.1002/adma.201601976. Epub 2016 Jun 20.
6
Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology.
Mol Ther. 2016 Aug;24(7):1267-77. doi: 10.1038/mt.2016.85. Epub 2016 Apr 29.
7
Near-Infrared Illumination of Native Tissues for Image-Guided Surgery.
J Med Chem. 2016 Jun 9;59(11):5311-23. doi: 10.1021/acs.jmedchem.6b00038. Epub 2016 May 19.
8
Indocyanine green delivery systems for tumour detection and treatments.
Biotechnol Adv. 2016 Sep-Oct;34(5):768-789. doi: 10.1016/j.biotechadv.2016.04.001. Epub 2016 Apr 14.
9
Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.
Angew Chem Int Ed Engl. 2016 Mar 14;55(12):4097-100. doi: 10.1002/anie.201600233. Epub 2016 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验