Suppr超能文献

基于全基因组网络的阿尔茨海默病神经影像学计划(ADNI)队列中脑脊液总tau蛋白/β淀粉样蛋白1-42比值的通路分析

Genome-wide network-based pathway analysis of CSF t-tau/Aβ1-42 ratio in the ADNI cohort.

作者信息

Cong Wang, Meng Xianglian, Li Jin, Zhang Qiushi, Chen Feng, Liu Wenjie, Wang Ying, Cheng Sipu, Yao Xiaohui, Yan Jingwen, Kim Sungeun, Saykin Andrew J, Liang Hong, Shen Li

机构信息

College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001, China.

Harbin Huade University, No.288 Xue Yuan Rd. Limin Development Zone, Harbin, 150025, China.

出版信息

BMC Genomics. 2017 May 30;18(1):421. doi: 10.1186/s12864-017-3798-z.

Abstract

BACKGROUND

The cerebrospinal fluid (CSF) levels of total tau (t-tau) and Aβ are potential early diagnostic markers for probable Alzheimer's disease (AD). The influence of genetic variation on these CSF biomarkers has been investigated in candidate or genome-wide association studies (GWAS). However, the investigation of statistically modest associations in GWAS in the context of biological networks is still an under-explored topic in AD studies. The main objective of this study is to gain further biological insights via the integration of statistical gene associations in AD with physical protein interaction networks.

RESULTS

The CSF and genotyping data of 843 study subjects (199 CN, 85 SMC, 239 EMCI, 207 LMCI, 113 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed. PLINK was used to perform GWAS on the t-tau/Aβ ratio using quality controlled genotype data, including 563,980 single nucleotide polymorphisms (SNPs), with age, sex and diagnosis as covariates. Gene-level p-values were obtained by VEGAS2. Genes with p-value ≤ 0.05 were mapped on to a protein-protein interaction (PPI) network (9,617 nodes, 39,240 edges, from the HPRD Database). We integrated a consensus model strategy into the iPINBPA network analysis framework, and named it as CM-iPINBPA. Four consensus modules (CMs) were discovered by CM-iPINBPA, and were functionally annotated using the pathway analysis tool Enrichr. The intersection of four CMs forms a common subnetwork of 29 genes, including those related to tau phosphorylation (GSK3B, SUMO1, AKAP5, CALM1 and DLG4), amyloid beta production (CASP8, PIK3R1, PPA1, PARP1, CSNK2A1, NGFR, and RHOA), and AD (BCL3, CFLAR, SMAD1, and HIF1A).

CONCLUSIONS

This study coupled a consensus module (CM) strategy with the iPINBPA network analysis framework, and applied it to the GWAS of CSF t-tau/Aβ1-42 ratio in an AD study. The genome-wide network analysis yielded 4 enriched CMs that share not only genes related to tau phosphorylation or amyloid beta production but also multiple genes enriching several KEGG pathways such as Alzheimer's disease, colorectal cancer, gliomas, renal cell carcinoma, Huntington's disease, and others. This study demonstrated that integration of gene-level associations with CMs could yield statistically significant findings to offer valuable biological insights (e.g., functional interaction among the protein products of these genes) and suggest high confidence candidates for subsequent analyses.

摘要

背景

总tau蛋白(t-tau)和淀粉样β蛋白(Aβ)的脑脊液(CSF)水平是可能的阿尔茨海默病(AD)的潜在早期诊断标志物。在候选基因或全基因组关联研究(GWAS)中已经研究了基因变异对这些脑脊液生物标志物的影响。然而,在生物网络背景下对GWAS中统计学上适度关联的研究在AD研究中仍然是一个未充分探索的主题。本研究的主要目的是通过将AD中的统计基因关联与物理蛋白质相互作用网络整合,以获得进一步的生物学见解。

结果

分析了来自阿尔茨海默病神经影像倡议(ADNI)的843名研究对象(199名认知正常者、85名轻度认知障碍者、239名早期轻度认知障碍者、207名晚期轻度认知障碍者、113名AD患者)的脑脊液和基因分型数据。使用PLINK对t-tau/Aβ比值进行GWAS分析,使用质量控制的基因分型数据,包括563,980个单核苷酸多态性(SNP),以年龄、性别和诊断作为协变量。通过VEGAS2获得基因水平的p值。p值≤0.05的基因被映射到一个蛋白质-蛋白质相互作用(PPI)网络(来自HPRD数据库,有9,617个节点,39,240条边)。我们将一种共识模型策略整合到iPINBPA网络分析框架中,并将其命名为CM-iPINBPA。CM-iPINBPA发现了四个共识模块(CM),并使用通路分析工具Enrichr进行功能注释。四个CM的交集形成了一个由29个基因组成的共同子网,包括与tau磷酸化相关的基因(糖原合成酶激酶3β、小泛素样修饰蛋白1、A激酶锚定蛋白5、钙调蛋白1和盘状结构域蛋白4)、淀粉样β蛋白产生相关的基因(半胱天冬酶8、磷脂酰肌醇-3激酶调节亚基1、肽酶A1、聚(ADP-核糖)聚合酶1、酪蛋白激酶2α1、神经生长因子受体和RhoA)以及AD相关的基因(B细胞淋巴瘤3、含CFLAR的凋亡抑制蛋白、SMAD1和缺氧诱导因子1α)。

结论

本研究将共识模块(CM)策略与iPINBPA网络分析框架相结合,并将其应用于AD研究中脑脊液t-tau/Aβ1-42比值的GWAS。全基因组网络分析产生了4个富集的CM,这些CM不仅共享与tau磷酸化或淀粉样β蛋白产生相关的基因,还共享多个富集多种KEGG通路(如阿尔茨海默病、结直肠癌、胶质瘤、肾细胞癌、亨廷顿舞蹈病等)的基因。本研究表明,将基因水平的关联与CM整合可以产生具有统计学意义的结果,以提供有价值的生物学见解(例如,这些基因的蛋白质产物之间的功能相互作用),并为后续分析提出高可信度的候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9df5/5450240/45b11f4dd8ca/12864_2017_3798_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验