Suppr超能文献

阿尔茨海默病皮质下成像表型的多变量全基因组关联和网络分析

Multivariate genome wide association and network analysis of subcortical imaging phenotypes in Alzheimer's disease.

作者信息

Meng Xianglian, Li Jin, Zhang Qiushi, Chen Feng, Bian Chenyuan, Yao Xiaohui, Yan Jingwen, Xu Zhe, Risacher Shannon L, Saykin Andrew J, Liang Hong, Shen Li

机构信息

School of Computer Information & Engineering, Changzhou Institute of Technology, Changzhou, 213032, China.

College of Automation, Harbin Engineering University, Harbin, 150001, China.

出版信息

BMC Genomics. 2020 Dec 29;21(Suppl 11):896. doi: 10.1186/s12864-020-07282-7.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) have identified many individual genes associated with brain imaging quantitative traits (QTs) in Alzheimer's disease (AD). However single marker level association discovery may not be able to address the underlying biological interactions with disease mechanism.

RESULTS

In this paper, we used the MGAS (Multivariate Gene-based Association test by extended Simes procedure) tool to perform multivariate GWAS on eight AD-relevant subcortical imaging measures. We conducted multiple iPINBPA (integrative Protein-Interaction-Network-Based Pathway Analysis) network analyses on MGAS findings using protein-protein interaction (PPI) data, and identified five Consensus Modules (CMs) from the PPI network. Functional annotation and network analysis were performed on the identified CMs. The MGAS yielded significant hits within APOE, TOMM40 and APOC1 genes, which were known AD risk factors, as well as a few new genes such as LAMA1, XYLB, HSD17B7P2, and NPEPL1. The identified five CMs were enriched by biological processes related to disorders such as Alzheimer's disease, Legionellosis, Pertussis, and Serotonergic synapse.

CONCLUSIONS

The statistical power of coupling MGAS with iPINBPA was higher than traditional GWAS method, and yielded new findings that were missed by GWAS. This study provides novel insights into the molecular mechanism of Alzheimer's Disease and will be of value to novel gene discovery and functional genomic studies.

摘要

背景

全基因组关联研究(GWAS)已鉴定出许多与阿尔茨海默病(AD)脑成像定量性状(QT)相关的单个基因。然而,单标记水平的关联发现可能无法解决与疾病机制潜在的生物学相互作用。

结果

在本文中,我们使用MGAS(通过扩展Simes程序进行的基于多变量基因的关联测试)工具对八项与AD相关的皮质下成像指标进行多变量GWAS。我们使用蛋白质-蛋白质相互作用(PPI)数据对MGAS的发现进行了多次iPINBPA(基于整合蛋白质-相互作用网络的通路分析)网络分析,并从PPI网络中识别出五个共识模块(CM)。对识别出的CM进行了功能注释和网络分析。MGAS在已知的AD风险因素APOE、TOMM40和APOC1基因以及一些新基因如LAMA1、XYLB、HSD17B7P2和NPEPL1中产生了显著结果。识别出的五个CM富含与阿尔茨海默病、军团病、百日咳和5-羟色胺能突触等疾病相关的生物学过程。

结论

将MGAS与iPINBPA相结合的统计功效高于传统的GWAS方法,并产生了GWAS遗漏的新发现。本研究为阿尔茨海默病的分子机制提供了新见解,对新基因发现和功能基因组学研究具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aae/7771059/3a91075fc84d/12864_2020_7282_Fig1_HTML.jpg

相似文献

1
2
Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer's Disease.
Curr Alzheimer Res. 2019;16(13):1163-1174. doi: 10.2174/1567205016666191121142558.
4
Identifying genetic markers enriched by brain imaging endophenotypes in Alzheimer's disease.
BMC Med Genomics. 2022 Aug 1;15(Suppl 2):168. doi: 10.1186/s12920-022-01323-8.
5
7
10
Powerful and Adaptive Testing for Multi-trait and Multi-SNP Associations with GWAS and Sequencing Data.
Genetics. 2016 Jun;203(2):715-31. doi: 10.1534/genetics.115.186502. Epub 2016 Apr 13.

引用本文的文献

3
Editorial: Exploring GWAS data by biomolecular network analysis in revealing genetic disease mechanisms.
Front Genet. 2023 May 30;14:1223913. doi: 10.3389/fgene.2023.1223913. eCollection 2023.
4
Alzheimer's disease pathogenetic progression is associated with changes in regulated retained introns and editing of circular RNAs.
Front Mol Neurosci. 2023 May 5;16:1141079. doi: 10.3389/fnmol.2023.1141079. eCollection 2023.
5
Revealing the correlations between brain cortical characteristics and susceptibility genes for Alzheimer disease: a cross-sectional study.
Quant Imaging Med Surg. 2023 Apr 1;13(4):2451-2465. doi: 10.21037/qims-22-602. Epub 2023 Mar 22.
8
Biologia Futura: progress and future perspectives of long non-coding RNAs in forest trees.
Biol Futur. 2022 Mar;73(1):43-53. doi: 10.1007/s42977-021-00108-x. Epub 2021 Nov 29.
9
Pursuit of precision medicine: Systems biology approaches in Alzheimer's disease mouse models.
Neurobiol Dis. 2021 Dec;161:105558. doi: 10.1016/j.nbd.2021.105558. Epub 2021 Nov 10.

本文引用的文献

1
Interpretation of risk loci from genome-wide association studies of Alzheimer's disease.
Lancet Neurol. 2020 Apr;19(4):326-335. doi: 10.1016/S1474-4422(19)30435-1. Epub 2020 Jan 24.
2
Brain Imaging Genomics: Integrated Analysis and Machine Learning.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):125-162. doi: 10.1109/JPROC.2019.2947272. Epub 2019 Oct 29.
3
Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer's Disease.
Curr Alzheimer Res. 2019;16(13):1163-1174. doi: 10.2174/1567205016666191121142558.
6
Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk.
Nat Genet. 2019 Mar;51(3):404-413. doi: 10.1038/s41588-018-0311-9. Epub 2019 Jan 7.
7
Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2018 May 1;101(1):128-135. doi: 10.1016/j.ijrobp.2018.01.054. Epub 2018 Jan 31.
8
Innate Immune Surveillance in the Central Nervous System Following Legionella pneumophila Infection.
CNS Neurol Disord Drug Targets. 2017;16(10):1080-1089. doi: 10.2174/1871527316666171123210420.
9
Network science of biological systems at different scales: A review.
Phys Life Rev. 2018 Mar;24:118-135. doi: 10.1016/j.plrev.2017.11.003. Epub 2017 Nov 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验