Suppr超能文献

免疫细胞细胞毒性的计算预测

Computational prediction of immune cell cytotoxicity.

作者信息

Schrey Anna K, Nickel-Seeber Janette, Drwal Malgorzata N, Zwicker Paula, Schultze Nadin, Haertel Beate, Preissner Robert

机构信息

Charité - University Medicine Berlin, Institute for Physiology and ECRC, Berlin, Germany.

University of Greifswald, Institute of Pharmacy, Greifswald, Germany.

出版信息

Food Chem Toxicol. 2017 Sep;107(Pt A):150-166. doi: 10.1016/j.fct.2017.05.041. Epub 2017 May 27.

Abstract

Immunotoxicity, defined as adverse effects of xenobiotics on the immune system, is gaining increasing attention in the approval process of industrial chemicals and drugs. In-vivo and ex-vivo experiments have been the gold standard in immunotoxicity assessment so far, so the development of in-vitro and in-silico alternatives is an important issue. In this paper we describe a widely applicable, easy-to use computational approach which can serve as an initial immunotoxicity screen of new chemical entities. Molecular fingerprints describing chemical structure were used as parameters in a machine-learning approach based on the Naïve-Bayes learning algorithm. The model was trained using blood-cell growth inhibition data from the NCI database and validated externally with several in-house and literature-derived data sets tested in cytotoxicity assays on different types on immune cells. Both cross-validations and external validations resulted in areas under the receiver operator curves (ROC/AUC) of 75% or higher. The classification of the validation data sets occurred with excellent specificities and fair to excellent selectivities, depending on the data set. This means that the probability of actual immunotoxicity is very high for compounds classified as immunotoxic, while the fraction of false negative predictions might vary. Thus, in a multistep immunotoxicity screening scheme, the classification as immunotoxic can be accepted without additional confirmation, while compounds classified as not immunotoxic will have to be subjected to further investigation.

摘要

免疫毒性被定义为异生物素对免疫系统的不利影响,在工业化学品和药物的审批过程中日益受到关注。迄今为止,体内和体外实验一直是免疫毒性评估的金标准,因此开发体外和计算机模拟替代方法是一个重要问题。在本文中,我们描述了一种广泛适用、易于使用的计算方法,该方法可作为新化学实体的初始免疫毒性筛选方法。描述化学结构的分子指纹被用作基于朴素贝叶斯学习算法的机器学习方法中的参数。该模型使用来自美国国立癌症研究所(NCI)数据库的血细胞生长抑制数据进行训练,并通过在不同类型免疫细胞的细胞毒性试验中测试的几个内部和文献衍生数据集进行外部验证。交叉验证和外部验证均得出受试者操作特征曲线下面积(ROC/AUC)为75%或更高。根据数据集的不同,验证数据集的分类具有出色的特异性和良好至出色的选择性。这意味着对于被分类为免疫毒性的化合物,实际具有免疫毒性的可能性非常高,而假阴性预测的比例可能会有所不同。因此,在多步骤免疫毒性筛选方案中,被分类为免疫毒性的情况无需额外确认即可接受,而被分类为非免疫毒性的化合物则必须进行进一步调查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验