McReynolds Melanie R, Wang Wenqing, Holleran Lauren M, Hanna-Rose Wendy
From the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802.
From the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
J Biol Chem. 2017 Jul 7;292(27):11147-11153. doi: 10.1074/jbc.C117.795344. Epub 2017 May 30.
NAD biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, are reported to lack a NAD biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of NAD biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact biosynthesis pathway for NAD from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD levels and partially reversed NAD-dependent phenotypes caused by mutation of , which encodes a nicotinamidase required for NAD salvage biosynthesis, demonstrating contribution of synthesis to NAD homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD biosynthesis creates novel possibilities for manipulating NAD biosynthetic pathways, which is key for the future of therapeutics.
NAD生物合成是影响健康寿命、肥胖相关表型以及肿瘤生长的一个有吸引力且前景广阔的治疗靶点。充分且有效地利用这一靶点实现治疗益处需要全面了解NAD生物合成途径。在此,我们报告了一种保守的磷酸核糖基转移酶在NAD生物合成中此前未被认识到的作用。由于其基因组中未编码必需的喹啉酸磷酸核糖基转移酶(QPRTase),据报道其缺乏NAD生物合成途径。然而,色氨酸生成喹啉酸(QA)所需的犬尿氨酸途径的所有基因均存在。因此,我们研究了该生物体中NAD生物合成的情况。通过结合同位素追踪和遗传学实验,我们证明了存在一条从色氨酸经QA完整合成NAD的生物合成途径,突出了这一重要生物合成活性的功能保守性。补充犬尿氨酸途径中间产物也提高了NAD水平,并部分逆转了由编码NAD补救生物合成所需烟酰胺酶的基因突变引起的NAD依赖性表型,证明了 合成对NAD稳态的贡献。通过研究基因组中的候选磷酸核糖基转移酶基因,我们确定在嘧啶生物合成中起作用的保守尿苷单磷酸磷酸核糖基转移酶(UMPS)是NAD生物合成所必需的,可替代缺失的QPRTase。我们认为UMPS类似的潜在代谢活性可能在其他生物体中发挥作用。这种NAD生物合成机制为操纵NAD生物合成途径创造了新的可能性,这对未来治疗学至关重要。