Lerat Hervé, Imache Mohamed Rabah, Polyte Jacqueline, Gaudin Aurore, Mercey Marion, Donati Flora, Baudesson Camille, Higgs Martin R, Picard Alexandre, Magnan Christophe, Foufelle Fabienne, Pawlotsky Jean-Michel
INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France.
INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France.
J Biol Chem. 2017 Aug 4;292(31):12860-12873. doi: 10.1074/jbc.M117.785030. Epub 2017 May 30.
Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans.
与病毒相关的2型糖尿病常见于丙型肝炎病毒(HCV)感染个体;然而,其潜在分子机制仍不清楚。我们的目的是利用表达完整HCV开放阅读框的FL-N/35转基因小鼠来阐明这些机制。我们观察到这些小鼠表现出葡萄糖不耐受和胰岛素抵抗。我们还发现,FL-N/35小鼠中Glut-2膜表达降低,肝细胞葡萄糖摄取受到干扰,这部分解释了这些小鼠中HCV诱导的葡萄糖不耐受。在FL-N/35原代肝细胞中,通过TNFα/SOCS3的失调,从IRS2到PDK1磷酸化的肝脏胰岛素信号通路早期步骤持续受损。尽管空腹胰岛素血症较高,但在HCV小鼠中观察到肝脏葡萄糖生成增加,同时肝脏糖异生基因的表达降低。HCV小鼠中的Akt激酶活性高于野生型小鼠,但在HCV小鼠肝脏中,Akt依赖性叉头转录因子FoxO1在丝氨酸256处的磷酸化(触发其核排除)较低。这些发现表明在表达HCV蛋白的肝细胞中经典Akt/FoxO1途径解偶联。因此,肝脏中HCV蛋白的表达足以通过损害胰岛素信号和葡萄糖摄取来诱导胰岛素抵抗。总之,我们在HCV转基因小鼠中观察到了导致糖尿病前期状态的一系列完整事件,为人类中HCV诱导的糖尿病提供了有价值的机制解释。