Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
Adv Mater. 2017 Jul;29(27). doi: 10.1002/adma.201700810. Epub 2017 May 31.
Exploring long-range electron transport across protein assemblies is a central interest in both the fundamental research of biological processes and the emerging field of bioelectronics. This work examines the use of serum-albumin-based freestanding mats as macroscopic electron mediators in bioelectronic devices. In particular, this study focuses on how doping the protein mat with hemin improves charge-transport. It is demonstrated that doping can increase conductivity 40-fold via electron hopping between adjacent hemin molecules, resulting in the highest measured conductance for a protein-based material yet reported, and transport over centimeter length scales. The use of distance-dependent AC impedance and DC current-voltage measurements allows the contribution from electron hopping between adjacent hemin molecules to be isolated. Because the hemin-doped serum albumin mats have both biocompatibility and fabrication simplicity, they should be applicable to a range of bioelectronic devices of varying sizes, configurations, and applications.
探索跨越蛋白质组装体的长程电子输运是生物过程基础研究和新兴生物电子学领域的核心关注点。本工作研究了基于血清白蛋白的独立垫在生物电子设备中作为宏观电子介体的用途。特别是,本研究重点关注了用血红素掺杂蛋白质垫如何改善电荷输运。研究表明,掺杂可以通过相邻血红素分子之间的电子跳跃将电导率提高 40 倍,从而产生了迄今为止报道的基于蛋白质的材料中最高的测量电导率,并实现了厘米级长度的输运。使用依赖距离的交流阻抗和直流电流-电压测量可以将相邻血红素分子之间的电子跳跃贡献分离出来。由于血红素掺杂的血清白蛋白垫具有生物相容性和制造简单性,它们应该适用于各种不同尺寸、配置和应用的生物电子设备。