Suppr超能文献

氧化还原活性将固态电子输运与天然和人工蛋白质中的溶液基电子转移区分开来:细胞色素 C 和血红素掺杂的人血清白蛋白。

Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin.

机构信息

Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Phys Chem Chem Phys. 2013 Oct 28;15(40):17142-9. doi: 10.1039/c3cp52885e.

Abstract

Integrating proteins in molecular electronic devices requires control over their solid-state electronic transport behavior. Unlike "traditional" electron transfer (ET) measurements of proteins that involve liquid environments and a redox cycle, no redox cofactor is needed for solid-state electron transport (ETp) across the protein. Here we show the fundamental difference between these two approaches by macroscopic area measurements, which allow measuring ETp temperature dependence down to cryogenic temperatures, via cytochrome C (Cyt C), an ET protein with a heme (Fe-porphyrin) prosthetic group as a redox centre. We compare the ETp to electrochemical ET measurements, and do so also for the protein without the Fe (with metal-free porphyrin) and without porphyrin. As removing the porphyrin irreversibly alters the protein's conformation, we repeat these measurements with human serum albumin (HSA), 'doped' (by non-covalent binding) with a single hemin equivalent, i.e., these natural and artificial proteins share a common prosthetic group. ETp via Cyt C and HSA-hemin are very similar in terms of current magnitude and temperature dependence, which suggests similar ETp mechanisms via these two systems, thermally activated hopping (with ~0.1 eV activation energy) >190 K and tunneling by superexchange <190 K. Also, ET rates to and from the Fe redox centres (Fe(2+) <=> Fe(3+) + e(-)), measured by electrochemistry of HSA-hemin are only 4 times lower than those for Cyt C. However, while removing the Fe redox centre from the porphyrin ring markedly affects the ET rate, it hardly changes the ETp currents through these proteins, while removing the macrocycle (from HSA, which retains its conformation) significantly reduces ETp efficiency. These results show that solid-state ETp across proteins does not require the presence of a redox cofactor, and that while for ET the Fe ion is the main electron mediator, for ETp the porphyrin ring has this function.

摘要

将蛋白质整合到分子电子设备中需要控制其固态电子输运行为。与涉及液体环境和氧化还原循环的“传统”蛋白质电子转移 (ET) 测量不同,固态电子输运 (ETp) 不需要蛋白质中氧化还原辅因子。在这里,我们通过宏观面积测量展示了这两种方法的根本区别,这种方法允许通过细胞色素 C(Cyt C)测量 ETp 的温度依赖性,直至低温,Cyt C 是一种具有血红素(Fe-卟啉)辅基作为氧化还原中心的 ET 蛋白。我们将 ETp 与电化学 ET 测量进行了比较,并且还对没有 Fe(具有金属自由卟啉)和没有卟啉的蛋白质进行了比较。由于去除卟啉会不可逆地改变蛋白质的构象,因此我们使用人血清白蛋白 (HSA) 重复了这些测量,HSA 通过非共价键结合了一个血红素当量,即这些天然和人工蛋白质具有共同的辅基。Cyt C 和 HSA-血红素的 ETp 在电流大小和温度依赖性方面非常相似,这表明这两种系统的 ETp 机制相似,热激活跳跃(~0.1 eV 活化能)>190 K 和超交换隧穿<190 K。此外,通过 HSA-血红素的电化学测量到和来自 Fe 氧化还原中心(Fe(2+) <=> Fe(3+) + e(-))的 ET 速率仅比 Cyt C 低 4 倍。然而,虽然从卟啉环中去除 Fe 氧化还原中心会显著影响 ET 速率,但它几乎不会改变这些蛋白质的 ETp 电流,而去除大环(从保留其构象的 HSA 中)则会显著降低 ETp 效率。这些结果表明,蛋白质之间的固态 ETp 不需要氧化还原辅因子的存在,并且对于 ET,Fe 离子是主要的电子介体,而对于 ETp,卟啉环具有此功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验