Suppr超能文献

在过冷状态下进行原位相转变控制,以实现稳健的活性玻璃纤维。

In-Situ Phase Transition Control in the Supercooled State for Robust Active Glass Fiber.

机构信息

State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510640, China.

Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Special Glass Fiber and Device Engineering Technology Research and Development Center of Guangdong Province , Guangzhou 510640, China.

出版信息

ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20664-20670. doi: 10.1021/acsami.7b05317. Epub 2017 Jun 9.

Abstract

The construction of a dopant-activated photonic composite is of great technological importance for various applications, including smart lighting, optical amplification, laser, and optical detection. The bonding arrangement around the introduced dopants largely determines the properties, yet it remains a daunting challenge to manipulate the local state of the matrix (i.e., phase) inside the transparent composite in a controllable manner. Here we demonstrate that the relaxation of the supercooled state enables in-situ phase transition control in glass. Benefiting from the unique local atom arrangement manner, the strategy offers the possibility for simultaneously tuning the chemical environment of the incorporated dopant and engineering the dopant-host interaction. This allows us to effectively activate the dopant with high efficiency (calculated as ∼100%) and profoundly enhance the dopant-host energy-exchange interaction. Our results highlight that the in-situ phase transition control in glass may provide new opportunities for fabrication of unusual photonic materials with intense broadband emission at ∼1100 nm and development of the robust optical detection unit with high compactness and broadband photon-harvesting capability (from X-ray to ultraviolet light).

摘要

掺杂激活光子复合材料的构建对于各种应用具有重要的技术意义,包括智能照明、光学放大、激光和光学检测。引入的掺杂剂周围的键合排列在很大程度上决定了材料的性质,但以可控的方式操纵透明复合材料内部基质(即相位)的局部状态仍然是一个艰巨的挑战。在这里,我们证明过冷状态的弛豫能够实现玻璃中的原位相转变控制。得益于独特的局部原子排列方式,该策略为同时调整掺入掺杂剂的化学环境和工程掺杂剂-宿主相互作用提供了可能性。这使得我们能够有效地以高效率(计算为约 100%)激活掺杂剂,并显著增强掺杂剂-宿主能量交换相互作用。我们的结果表明,玻璃中的原位相转变控制可能为制造具有在约 1100nm 处强宽带发射的异常光子材料以及开发具有高紧凑性和宽带光子收集能力(从 X 射线到紫外线)的稳健光学检测单元提供新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验