Suppr超能文献

应用于自然种群数量遗传学的最大似然法。

MAXIMUM-LIKELIHOOD APPROACHES APPLIED TO QUANTITATIVE GENETICS OF NATURAL POPULATIONS.

作者信息

Shaw Ruth G

机构信息

Department of Genetics, SK-50, University of Washington, Seattle, WA, 98195.

出版信息

Evolution. 1987 Jul;41(4):812-826. doi: 10.1111/j.1558-5646.1987.tb05855.x.

Abstract

Growing interest in adaptive evolution in natural populations has spurred efforts to infer genetic components of variance and covariance of quantitative characters. Here, I review difficulties inherent in the usual least-squares methods of estimation. A useful alternative approach is that of maximum likelihood (ML). Its particular advantage over least squares is that estimation and testing procedures are well defined, regardless of the design of the data. A modified version of ML, REML, eliminates the bias of ML estimates of variance components. Expressions for the expected bias and variance of estimates obtained from balanced, fully hierarchical designs are presented for ML and REML. Analyses of data simulated from balanced, hierarchical designs reveal differences in the properties of ML, REML, and F-ratio tests of significance. A second simulation study compares properties of REML estimates obtained from a balanced, fully hierarchical design (within-generation analysis) with those from a sampling design including phenotypic data on parents and multiple progeny. It also illustrates the effects of imposing nonnegativity constraints on the estimates. Finally, it reveals that predictions of the behavior of significance tests based on asymptotic theory are not accurate when sample size is small and that constraining the estimates seriously affects properties of the tests. Because of their great flexibility, likelihood methods can serve as a useful tool for estimation of quantitative-genetic parameters in natural populations. Difficulties involved in hypothesis testing remain to be solved.

摘要

对自然种群适应性进化的兴趣日益浓厚,这促使人们努力推断数量性状方差和协方差的遗传成分。在此,我回顾了常用最小二乘法估计中固有的困难。一种有用的替代方法是最大似然法(ML)。它相对于最小二乘法的特殊优势在于,无论数据设计如何,估计和检验程序都有明确的定义。最大似然法的一种改进版本,即限制最大似然法(REML),消除了方差成分最大似然估计的偏差。给出了从平衡的、完全分层设计中获得的估计值的期望偏差和方差的表达式,用于最大似然法和限制最大似然法。对从平衡的、分层设计模拟的数据进行分析,揭示了最大似然法、限制最大似然法和F比率显著性检验在性质上的差异。第二项模拟研究比较了从平衡的、完全分层设计(代内分析)获得的限制最大似然估计值与从包括亲本和多个后代表型数据的抽样设计中获得的估计值的性质。它还说明了对估计值施加非负约束的影响。最后,研究表明,当样本量较小时,基于渐近理论对显著性检验行为的预测并不准确,并且对估计值进行约束会严重影响检验的性质。由于其极大的灵活性,似然法可以作为估计自然种群数量遗传参数的有用工具。假设检验中涉及的困难仍有待解决。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验