Thiede Denise A
W. K. Kellogg Biological Station and Department of Botany and Plant Pathology, Michigan State University, Hickory Corners, Michigan, 49060.
Evolution. 1998 Aug;52(4):998-1015. doi: 10.1111/j.1558-5646.1998.tb01829.x.
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive (σAo2) and environmental (σEo2) variances; maternal additive (σAm2) and environmental (σEm2) variances; and the direct-maternal additive (σApAm) and environmental (σEm2) covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial σAm2, a negative σAoAm, and a positive σEoEm. Subsequently, cotyledon diameter displays σAo2 and σAm2 of roughly the same magnitude and negative σAoAm. For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant σAo2 and σAm2 and a negative σAoAm. All maternally inherited traits show significant negative σAoAm. Predicted response to selection under maternal inheritance depends on σAo2 and σAm2 as well as σAoAm. Negative σAoAm results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.
母亲可以通过她传递的基因(孟德尔遗传)以及直接影响其后代该性状的母体属性(母体遗传)来影响后代的性状。母体遗传可以改变标准孟德尔模型中适应性进化的方向、速率和持续时间,而其对适应性进化的影响在自然种群中几乎未被探索。在一项分层定量遗传分析中,为了确定冬季一年生植物弗吉尼亚 Collinsia 母体遗传的大小和结构,我考虑了三种潜在的遗传模型。这些模型从仅估计直接(即孟德尔)加性和环境方差成分的标准孟德尔模型,到估计六个加性和环境方差成分的母体遗传模型:直接加性(σAo2)和环境(σEo2)方差;母体加性(σAm2)和环境(σEm2)方差;以及直接 - 母体加性(σApAm)和环境(σEm2)协方差。在生命周期的四个阶段所考虑的 10 个性状中,母体遗传的结构有所不同。在生命周期早期,种子重量和胚重显示出大量的 σAm2、负的 σAoAm 和正的 σEoEm。随后,子叶直径显示出大致相同大小的 σAo2 和 σAm2 以及负的 σAoAm。对于秋季莲座丛,叶数和叶长最好用孟德尔模型来描述。在春季,叶长显示出母体遗传,具有显著的 σAo2 和 σAm2 以及负的 σAoAm。所有母体遗传的性状都显示出显著的负 σAoAm。在母体遗传下预测的选择响应取决于 σAo2 和 σAm2 以及 σAoAm。负的 σAoAm 导致对种子重量和胚重的选择预测响应方向相反,而对所有后续母体遗传性状的预测响应接近零。母体遗传在这种一年生植物的生命周期中持续存在于许多与大小相关的性状中,并将改变该种群进化响应的方向和速率。