Suppr超能文献

在超深度测序病毒群体研究中,扩增步骤的靶分子数量限制了准确性和灵敏度。

The Number of Target Molecules of the Amplification Step Limits Accuracy and Sensitivity in Ultradeep-Sequencing Viral Population Studies.

作者信息

Gallet Romain, Fabre Frédéric, Michalakis Yannis, Blanc Stéphane

机构信息

INRA, UMR BGPI, INRA-CIRAD-SupAgro, Cirad TA-A54/K, Campus International de Baillarguet, Montpellier, France

UMR 1065 Santé et Agroécologie du Vignoble, INRA, Villenave d'Ornon, France.

出版信息

J Virol. 2017 Jul 27;91(16). doi: 10.1128/JVI.00561-17. Print 2017 Aug 15.

Abstract

The invention of next-generation sequencing (NGS) techniques marked the coming of a new era in the detection of the genetic diversity of intrahost viral populations. A good understanding of the genetic structure of these populations requires, first, the ability to identify the different isolates or variants and, second, the ability to accurately quantify them. However, the initial amplification step of NGS studies can impose potential quantitative biases, modifying the variant relative frequencies. In particular, the number of target molecules (NTM) used during the amplification step is vastly overlooked although of primary importance, as it sets the limit of the accuracy and sensitivity of the sequencing procedure. In the present article, we investigated quantitative biases in an NGS study of populations of a multipartite single-stranded DNA (ssDNA) virus at different steps of the procedure. We studied 20 independent populations of the ssDNA virus faba bean necrotic stunt virus (FBNSV) in two host plants, and FBNSV is a multipartite virus composed of eight genomic segments, whose specific and host-dependent relative frequencies are defined as the "genome formula." Our results show a significant distortion of the FBNSV genome formula after the amplification and sequencing steps. We also quantified the genetic bottleneck occurring at the amplification step by documenting the NTM of two genomic segments of FBNSV. We argue that the NTM must be documented and carefully considered when determining the sensitivity and accuracy of data from NGS studies. The advent of next-generation sequencing (NGS) techniques now enables study of the genetic diversity of viral populations. A good understanding of the genetic structure of these populations first requires the ability to identify the different isolates or variants and second requires the ability to accurately quantify them. Prior to sequencing, viral genomes need to be amplified, a step that potentially imposes quantitative biases and modifies the viral population structure. In particular, the number of target molecules (NTM) used during the amplification step is of primary importance, as it sets the limit of the accuracy and sensitivity of the sequencing procedure. In this work, we used 20 replicated populations of the multipartite faba bean necrotic stunt virus (FBNSV) to estimate the various limitations of ultradeep-sequencing studies performed on intrahost viral populations. We report quantitative biases during rolling-circle amplification and the NTM of two genomic segments of FBNSV.

摘要

下一代测序(NGS)技术的发明标志着宿主内病毒群体遗传多样性检测新时代的到来。要深入了解这些群体的遗传结构,首先需要具备识别不同分离株或变体的能力,其次需要具备准确量化它们的能力。然而,NGS研究的初始扩增步骤可能会产生潜在的定量偏差,改变变体的相对频率。特别是,扩增步骤中使用的靶分子数量(NTM)虽然至关重要,但却被大大忽视了,因为它设定了测序程序准确性和灵敏度的极限。在本文中,我们在一个多组分单链DNA(ssDNA)病毒群体的NGS研究中,调查了该程序不同步骤中的定量偏差。我们研究了两种宿主植物中20个独立的ssDNA病毒蚕豆坏死矮化病毒(FBNSV)群体,FBNSV是一种由八个基因组片段组成的多组分病毒,其特定的和宿主依赖的相对频率被定义为“基因组公式”。我们的结果显示,在扩增和测序步骤之后,FBNSV基因组公式出现了显著扭曲。我们还通过记录FBNSV两个基因组片段的NTM,量化了扩增步骤中出现的遗传瓶颈。我们认为,在确定NGS研究数据的灵敏度和准确性时,必须记录并仔细考虑NTM。下一代测序(NGS)技术的出现现在使得研究病毒群体的遗传多样性成为可能。要深入了解这些群体的遗传结构,首先需要具备识别不同分离株或变体的能力,其次需要具备准确量化它们的能力。在测序之前,病毒基因组需要进行扩增,这一步骤可能会产生定量偏差并改变病毒群体结构。特别是,扩增步骤中使用的靶分子数量(NTM)至关重要,因为它设定了测序程序准确性和灵敏度的极限。在这项工作中,我们使用了20个重复的多组分蚕豆坏死矮化病毒(FBNSV)群体,来估计对宿主内病毒群体进行的超深度测序研究的各种局限性。我们报告了滚环扩增过程中的定量偏差以及FBNSV两个基因组片段的NTM。

相似文献

2
Small Bottleneck Size in a Highly Multipartite Virus during a Complete Infection Cycle.
J Virol. 2018 Jun 29;92(14). doi: 10.1128/JVI.00139-18. Print 2018 Jul 15.
3
4
First Report of a Nanovirus Disease of Pea in Germany.
Plant Dis. 2010 May;94(5):642. doi: 10.1094/PDIS-94-5-0642C.
5
Gene copy number variations at the within-host population level modulate gene expression in a multipartite virus.
Virus Evol. 2022 Jun 22;8(2):veac058. doi: 10.1093/ve/veac058. eCollection 2022.
6
Localizing Genome Segments and Protein Products of a Multipartite Virus in Host Plant Cells.
Bio Protoc. 2019 Dec 5;9(23):e3443. doi: 10.21769/BioProtoc.3443.
7
Structure-guided mutagenesis of the capsid protein indicates that a nanovirus requires assembled viral particles for systemic infection.
PLoS Pathog. 2023 Jan 9;19(1):e1011086. doi: 10.1371/journal.ppat.1011086. eCollection 2023 Jan.
8
The genome formula of a multipartite virus is regulated both at the individual segment and the segment group levels.
PLoS Pathog. 2024 Jan 25;20(1):e1011973. doi: 10.1371/journal.ppat.1011973. eCollection 2024 Jan.
9
Effects of an Alphasatellite on the Life Cycle of the Nanovirus .
J Virol. 2022 Feb 9;96(3):e0138821. doi: 10.1128/JVI.01388-21. Epub 2021 Nov 24.
10
Two distinct nanovirus species infecting faba bean in Morocco.
Arch Virol. 2010;155(1):37-46. doi: 10.1007/s00705-009-0548-9. Epub 2009 Nov 22.

引用本文的文献

2
4
A new genus of alphasatellites associated with banana bunchy top virus in Southeast Asia.
Virus Evol. 2023 Dec 15;10(1):vead076. doi: 10.1093/ve/vead076. eCollection 2024.
5
Benchmarking of virome metagenomic analysis approaches using a large, 60+ members, viral synthetic community.
J Virol. 2023 Nov 30;97(11):e0130023. doi: 10.1128/jvi.01300-23. Epub 2023 Oct 27.
6
Evaluation of sequencing and PCR-based methods for the quantification of the viral genome formula.
Virus Res. 2023 Mar;326:199064. doi: 10.1016/j.virusres.2023.199064. Epub 2023 Feb 7.
7
Structure-guided mutagenesis of the capsid protein indicates that a nanovirus requires assembled viral particles for systemic infection.
PLoS Pathog. 2023 Jan 9;19(1):e1011086. doi: 10.1371/journal.ppat.1011086. eCollection 2023 Jan.
9
Nonconcomitant host-to-host transmission of multipartite virus genome segments may lead to complete genome reconstitution.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2201453119. doi: 10.1073/pnas.2201453119. Epub 2022 Aug 1.
10
Gene copy number variations at the within-host population level modulate gene expression in a multipartite virus.
Virus Evol. 2022 Jun 22;8(2):veac058. doi: 10.1093/ve/veac058. eCollection 2022.

本文引用的文献

1
Towards quantitative viromics for both double-stranded and single-stranded DNA viruses.
PeerJ. 2016 Dec 8;4:e2777. doi: 10.7717/peerj.2777. eCollection 2016.
2
The Strange Lifestyle of Multipartite Viruses.
PLoS Pathog. 2016 Nov 3;12(11):e1005819. doi: 10.1371/journal.ppat.1005819. eCollection 2016 Nov.
3
Measurements of Intrahost Viral Diversity Are Extremely Sensitive to Systematic Errors in Variant Calling.
J Virol. 2016 Jul 11;90(15):6884-95. doi: 10.1128/JVI.00667-16. Print 2016 Aug 1.
4
Single-locus enrichment without amplification for sequencing and direct detection of epigenetic modifications.
Mol Genet Genomics. 2016 Jun;291(3):1491-504. doi: 10.1007/s00438-016-1167-2. Epub 2016 Jan 29.
5
TOGGLE: toolbox for generic NGS analyses.
BMC Bioinformatics. 2015 Nov 9;16:374. doi: 10.1186/s12859-015-0795-6.
6
Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View.
J Virol. 2015 Oct;89(19):9719-26. doi: 10.1128/JVI.00780-15. Epub 2015 Jul 15.
7
Gene copy number is differentially regulated in a multipartite virus.
Nat Commun. 2013;4:2248. doi: 10.1038/ncomms3248.
8
Metagenomic analysis of viral communities in (hado)pelagic sediments.
PLoS One. 2013;8(2):e57271. doi: 10.1371/journal.pone.0057271. Epub 2013 Feb 27.
9
Viral population analysis and minority-variant detection using short read next-generation sequencing.
Philos Trans R Soc Lond B Biol Sci. 2013 Feb 4;368(1614):20120205. doi: 10.1098/rstb.2012.0205. Print 2013 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验