Suppr超能文献

利用数据分析预测医院的预约失约情况。

Predicting appointment misses in hospitals using data analytics.

作者信息

Devasahay Sylvester Rohan, Karpagam Sylvia, Ma Nang Laik

机构信息

Data Science, School of information Systems, Singapore Management University, Singapore.

Information Technology specialized in Analytics, Bangalore, India.

出版信息

Mhealth. 2017 Apr 17;3:12. doi: 10.21037/mhealth.2017.03.03. eCollection 2017.

Abstract

BACKGROUND

There is growing attention over the last few years about non-attendance in hospitals and its clinical and economic consequences. There have been several studies documenting the various aspects of non-attendance in hospitals. Project Predicting Appoint Misses (PAM) was started with the intention of being able to predict the type of patients that would not come for appointments after making bookings.

METHODS

Historic hospital appointment data merged with "distance from hospital" variable was used to run Logistic Regression, Support Vector Machine and Recursive Partitioning to decide the contributing variables to missed appointments.

RESULTS

Variables that are "class", "time", "demographics" related have an effect on the target variable, however, prediction models may not perform effectively due to very subtle influence on the target variable. Previously assumed major contributors like "age", "distance" did not have a major effect on the target variable.

CONCLUSIONS

With the given data it will be very difficult to make any moderate/strong prediction of the Appointment misses. That being said with the help of the cut off we are able to capture all of the "appointment misses" in addition to also capturing the actualized appointments.

摘要

背景

在过去几年中,医院患者爽约及其临床和经济后果越来越受到关注。已有多项研究记录了医院患者爽约的各个方面。开展“预测预约失约项目”(PAM)的目的是能够预测预约后不来就诊的患者类型。

方法

将历史医院预约数据与“距医院距离”变量合并,用于进行逻辑回归、支持向量机和递归划分,以确定导致预约失约的相关变量。

结果

与“类别”“时间”“人口统计学”相关的变量对目标变量有影响,然而,由于对目标变量的影响非常细微,预测模型可能无法有效发挥作用。之前假定的主要影响因素如“年龄”“距离”对目标变量没有重大影响。

结论

根据给定的数据,很难对预约失约进行任何中度/强度的预测。话虽如此,借助临界值,我们除了能够捕捉到实际发生的预约外,还能够捕捉到所有的“预约失约”情况。

相似文献

1
2
Data Analytics and Modeling for Appointment No-show in Community Health Centers.社区卫生中心预约未到诊的数据分析与建模
J Prim Care Community Health. 2018 Jan-Dec;9:2150132718811692. doi: 10.1177/2150132718811692.
5
10
Why military personnel fail to keep medical appointments.军事人员未能按时赴约就诊的原因。
J R Army Med Corps. 2008 Mar;154(1):26-30. doi: 10.1136/jramc-154-01-08.

引用本文的文献

5
Factors Associated with No-Show Rates in a Pediatric Audiology Clinic.与儿科听力学诊所失约率相关的因素。
Otol Neurotol. 2023 Oct 1;44(9):e648-e652. doi: 10.1097/MAO.0000000000003997. Epub 2023 Aug 15.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验