Hackauf Bernd, Haffke Stefan, Fromme Franz Joachim, Roux Steffen R, Kusterer Barbara, Musmann Dörthe, Kilian Andrzej, Miedaner Thomas
Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Groß Lüsewitz, 18190, Sanitz, Germany.
State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
Theor Appl Genet. 2017 Sep;130(9):1801-1817. doi: 10.1007/s00122-017-2926-0. Epub 2017 May 31.
Genetic diversity in elite rye germplasm as well as F testcross design enables fast QTL mapping to approach genes controlling grain yield, grain weight, tiller number and heading date in rye hybrids. Winter rye (Secale cereale L.) is a multipurpose cereal crop closely related to wheat, which offers the opportunity for a sustainable production of food and feed and which continues to emerge as a renewable energy source for the production of bioethanol and biomethane. Rye contributes to increase agricultural crop species diversity particularly in Central and Eastern Europe. In contrast to other small grain cereals, knowledge on the genetic architecture of complex inherited, agronomic important traits is yet limited for the outbreeding rye. We have performed a QTL analysis based on a F design and testcross performance of 258 experimental hybrids in multi-environmental field trials. A genetic linkage map covering 964.9 cM based on SSR, conserved-orthologous set (COS), and mixed-phase dominant DArT markers allowed to describe 22 QTL with significant effects for grain yield, heading date, tiller number, and thousand grain weight across seven environments. Using rye COS markers, orthologous segments for these traits have been identified in the rice genome, which carry cloned and functionally characterized rice genes. The initial genome scan described here together with the existing knowledge on candidate genes provides the basis for subsequent analyses of the genetic and molecular mechanisms underlying agronomic important traits in rye.
优良黑麦种质的遗传多样性以及F测交设计能够实现快速的QTL定位,从而找到控制黑麦杂交种籽粒产量、粒重、分蘖数和抽穗期的基因。冬黑麦(Secale cereale L.)是一种与小麦密切相关的多用途谷类作物,它为可持续生产粮食和饲料提供了机会,并且正逐渐成为生产生物乙醇和生物甲烷的可再生能源。黑麦有助于增加农作物物种的多样性,特别是在中欧和东欧。与其他小粒谷物相比,对于异交的黑麦,关于复杂遗传的、具有重要农艺性状的遗传结构的知识仍然有限。我们基于F设计和258个实验杂交种在多环境田间试验中的测交表现进行了QTL分析。一个基于SSR、保守直系同源集(COS)和混合相显性DArT标记构建的覆盖964.9 cM的遗传连锁图谱,使得我们能够在七个环境中描述22个对籽粒产量、抽穗期、分蘖数和千粒重有显著影响的QTL。利用黑麦COS标记,在水稻基因组中鉴定出了这些性状的直系同源区段,这些区段携带了已克隆并具有功能特征的水稻基因。本文所描述的初步基因组扫描以及关于候选基因的现有知识为后续分析黑麦重要农艺性状的遗传和分子机制提供了基础。