Suppr超能文献

一种基于知识的框架,用于利用大规模测序乳腺癌数据发现癌症易感变异。

A knowledge-based framework for the discovery of cancer-predisposing variants using large-scale sequencing breast cancer data.

作者信息

Melloni Giorgio E M, Mazzarella Luca, Bernard Loris, Bodini Margherita, Russo Anna, Luzi Lucilla, Pelicci Pier Giuseppe, Riva Laura

机构信息

Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, Milan, Italy.

Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan, Italy.

出版信息

Breast Cancer Res. 2017 May 31;19(1):63. doi: 10.1186/s13058-017-0854-1.

Abstract

BACKGROUND

The landscape of cancer-predisposing genes has been extensively investigated in the last 30 years with various methodologies ranging from candidate gene to genome-wide association studies. However, sequencing data are still poorly exploited in cancer predisposition studies due to the lack of statistical power when comparing millions of variants at once.

METHOD

To overcome these power limitations, we propose a knowledge-based framework founded on the characteristics of known cancer-predisposing variants and genes. Under our framework, we took advantage of a combination of previously generated datasets of sequencing experiments to identify novel breast cancer-predisposing variants, comparing the normal genomes of 673 breast cancer patients of European origin against 27,173 controls matched by ethnicity.

RESULTS

We detected several expected variants on known breast cancer-predisposing genes, like BRCA1 and BRCA2, and 11 variants on genes associated with other cancer types, like RET and AKT1. Furthermore, we detected 183 variants that overlap with somatic mutations in cancer and 41 variants associated with 38 possible loss-of-function genes, including PIK3CB and KMT2C. Finally, we found a set of 19 variants that are potentially pathogenic, negatively correlate with age at onset, and have never been associated with breast cancer.

CONCLUSIONS

In this study, we demonstrate the usefulness of a genomic-driven approach nested in a classic case-control study to prioritize cancer-predisposing variants. In addition, we provide a resource containing variants that may affect susceptibility to breast cancer.

摘要

背景

在过去30年里,人们运用从候选基因研究到全基因组关联研究等各种方法,对癌症易感基因格局进行了广泛研究。然而,由于一次性比较数百万个变异时缺乏统计效力,测序数据在癌症易感性研究中的利用仍然不足。

方法

为克服这些效力限制,我们提出了一个基于知识的框架,该框架基于已知癌症易感变异和基因的特征。在我们的框架下,我们利用先前生成的测序实验数据集的组合,来识别新的乳腺癌易感变异,将673名欧洲裔乳腺癌患者的正常基因组与27173名按种族匹配的对照进行比较。

结果

我们在已知的乳腺癌易感基因(如BRCA1和BRCA2)上检测到了几个预期变异,在与其他癌症类型相关的基因(如RET和AKT1)上检测到了另外11个变异。此外,我们检测到183个与癌症体细胞突变重叠的变异,以及41个与38个可能的功能丧失基因(包括PIK3CB和KMT2C)相关的变异。最后,我们发现了一组19个变异,这些变异可能具有致病性,与发病年龄呈负相关,且从未与乳腺癌相关联。

结论

在本研究中,我们证明了在经典病例对照研究中嵌套基因组驱动方法以确定癌症易感变异优先级的有用性。此外,我们提供了一个包含可能影响乳腺癌易感性的变异的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2981/5452392/e9e11c6e1bef/13058_2017_854_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验