State Key Laboratory of Fine Chemicals, Chemical Engineering Department, Dalian University of Technology , Linggong Road No. 2, Dalian 116024, China.
ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20491-20500. doi: 10.1021/acsami.7b02345. Epub 2017 Jun 9.
Interpenetrated networks between graphitic carbon infilling and ultrafine TiO nanocrystals with patterned macropores (100-200 nm) were successfully synthesized. Polypyrrole layer was conformably coated on the primary TiO nanoparticles (∼8 nm) by a photosensitive reaction and was then transformed into carbon infilling in the interparticle mesopores of the TiO nanoparticles. Compared to the carbon/graphene supported TiO nanoparticles or carbon coated TiO nanostructures, the carbon infilling would provide a conductive medium and buffer layer for volume expansion of the encapsulated TiO nanoparticles, thus enhancing conductivity and cycle stability of the C-TiO anode materials for lithium ion batteries (LIBs). In addition, the macropores with diameters of 100-200 nm in the C-TiO anode and the mesopores in carbon infilling could improve electrolyte transportation in the electrodes and shorten the lithium ion diffusion length. The C-TiO electrode can provide a large capacity of 192.8 mA h g after 100 cycles at 200 mA g, which is higher than those of the pure macroporous TiO electrode (144.8 mA h g), C-TiO composite electrode without macroporous structure (128 mA h g), and most of the TiO based electrodes in the literature. Importantly, the C-TiO electrode exhibits a high rate performance and still delivers a high capacity of ∼140 mA h g after 1000 cycles at 1000 mA g (∼5.88 C), suggesting good lithium storage properties of the macroporous C-TiO composites with high capacity, cycle stability, and rate capability. This work would be instructive for designing hierarchical porous TiO based anodes for high-performance LIBs.
具有图案化大孔(100-200nm)的石墨碳填充和超细 TiO 纳米晶的互穿网络被成功合成。聚吡咯层通过光敏反应在初级 TiO 纳米颗粒(∼8nm)上进行共形包覆,然后转化为 TiO 纳米颗粒间介孔中的碳填充。与碳/石墨烯负载的 TiO 纳米颗粒或碳包覆的 TiO 纳米结构相比,碳填充为封装的 TiO 纳米颗粒的体积膨胀提供了导电介质和缓冲层,从而提高了锂离子电池(LIB)用 C-TiO 阳极材料的导电性和循环稳定性。此外,C-TiO 阳极中大孔(100-200nm)和碳填充中的介孔可以改善电极中的电解质传输并缩短锂离子扩散长度。C-TiO 电极在 200mA g 下循环 100 次后可提供 192.8mA h g 的大容量,高于纯大孔 TiO 电极(144.8mA h g)、无大孔结构的 C-TiO 复合电极(128mA h g)和大多数文献中的 TiO 基电极。重要的是,C-TiO 电极具有高倍率性能,在 1000mA g 下循环 1000 次后仍可提供约 140mA h g 的高容量(约 5.88C),表明具有高容量、循环稳定性和倍率性能的大孔 C-TiO 复合材料具有良好的锂离子存储性能。这项工作对于设计高性能 LIB 用分层多孔 TiO 基阳极具有指导意义。