Laboratory of Polymer and Soft Matter Dynamics, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Bâtiment NO, Bruxelles 1050, Belgium.
Département de Physique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium.
J Chem Phys. 2017 May 28;146(20):203304. doi: 10.1063/1.4974834.
We investigated the impact of irreversible adsorption on the mechanisms of thermal expansion of 1D confined polymer layers. For spincoated films (polystyrene on aluminum) of constant thickness, the thermal expansion coefficient of the melt drops upon annealing following the kinetics of irreversible adsorption of the chains onto the supporting substrate, while the thermal expansion of the glass is annealing invariant. These perturbations are explained in terms of the reduction in free volume content, upon immobilization of monomers onto the substrate. To shed more light on this phenomenon, we performed an extensive investigation of the thermal expansion of irreversibly adsorbed layers of polystyrene on silicon oxide. We verified that, contrarily to recent speculations, these films cannot be modeled as dead layers - immobilized slabs lacking of segmental relaxation. On the contrary, thin adsorbed layers show an increase in thermal expansion with respect to the bulk, due to packing frustration. Immobilization plays a role only when the thickness of the adsorbed layers overcomes ∼10 nm. Finally, we show that for adsorbed layers the difference in thermal expansion between the melt and the glass is sufficiently high to investigate the glass transition down to 3 nm. Owing to this unique feature, not shared by spincoated films, adsorbed layers are the perfect candidate to study the properties of extremely thin polymer films.
我们研究了不可逆吸附对一维受限聚合物层热膨胀机制的影响。对于厚度恒定的旋涂薄膜(铝上的聚苯乙烯),在退火过程中,链不可逆吸附到支撑基底上的动力学导致熔体的热膨胀系数下降,而玻璃的热膨胀则保持不变。这些扰动可以用单体在基底上固定化时自由体积含量的减少来解释。为了更深入地了解这一现象,我们对聚苯乙烯在氧化硅上不可逆吸附层的热膨胀进行了广泛的研究。我们验证了,与最近的推测相反,这些薄膜不能被建模为没有链段松弛的固定化薄片(即死层)。相反,由于堆积受挫,薄吸附层的热膨胀相对于本体有所增加。只有当吸附层的厚度超过约 10nm 时,固定化才会起作用。最后,我们表明,对于吸附层,熔体和玻璃之间的热膨胀差异足够大,可以研究低至 3nm 的玻璃化转变。由于这一独特的特性,吸附层与旋涂薄膜不同,是研究极薄聚合物薄膜性质的理想选择。