Napolitano Simone
Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium.
Soft Matter. 2020 Jun 21;16(23):5348-5365. doi: 10.1039/d0sm00361a. Epub 2020 May 18.
For almost a decade, growing experimental evidence has revealed a strong correlation between the properties of nanoconfined polymers and the number of chains irreversibly adsorbed onto nonrepulsive interfaces, e.g. the supporting substrate of thin polymer coatings, or nanofillers dispersed in polymer melts. Based on such a correlation, it has already been possible to tailor structural and dynamics properties - such as the glass transition temperature, the crystallization rate, the thermal expansion coefficients, the viscosity and the wettability - of nanomaterials by controlling the adsorption kinetics. This evidence indicates that irreversible adsorption affects nanoconfinement effects. More recently, also the opposite phenomenon was experimentally observed: nanoconfinement alters interfacial interactions and, consequently, also the number of chains adsorbed in equilibrium conditions. In this review we discuss this intriguing interplay between irreversible adsorption and nanoconfinement effects in ultrathin polymer films. After introducing the methods currently used to prepare adsorbed layers and to measure the number of irreversibly adsorbed chains, we analyze the models employed to describe the kinetics of adsorption in polymer melts. We then discuss the structure of adsorbed polymer layers, focusing on the complex macromolecular architecture of interfacial chains and on their thermal expansion; we examine the way in which the structure of the adsorbed layer affects the thermal glass transition temperature, vitrification, and crystallization. By analyzing segmental dynamics of 1D confined systems, we describe experiments to track the changes in density during adsorption. We conclude this review with an analysis of the impact of nanoconfinement on adsorption, and a perspective on future work where we also address the key ideas of irreversibility, equilibration and long-range interactions.
近十年来,越来越多的实验证据表明,纳米受限聚合物的性质与不可逆吸附在非排斥性界面上的链的数量之间存在很强的相关性,例如薄聚合物涂层的支撑基材,或分散在聚合物熔体中的纳米填料。基于这种相关性,已经可以通过控制吸附动力学来调整纳米材料的结构和动力学性质,如玻璃化转变温度、结晶速率、热膨胀系数、粘度和润湿性。这一证据表明不可逆吸附会影响纳米限域效应。最近,实验还观察到了相反的现象:纳米限域会改变界面相互作用,从而也会改变平衡条件下吸附的链的数量。在这篇综述中,我们讨论了超薄聚合物薄膜中不可逆吸附与纳米限域效应之间这种有趣的相互作用。在介绍了目前用于制备吸附层和测量不可逆吸附链数量的方法之后,我们分析了用于描述聚合物熔体中吸附动力学的模型。然后,我们讨论吸附聚合物层的结构,重点关注界面链的复杂大分子结构及其热膨胀;我们研究吸附层的结构如何影响热玻璃化转变温度、玻璃化和结晶。通过分析一维受限系统的链段动力学,我们描述了跟踪吸附过程中密度变化的实验。我们在这篇综述的结尾分析了纳米限域对吸附的影响,并对未来的工作进行了展望,我们还讨论了不可逆性、平衡和长程相互作用的关键概念。